Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Имя Серафима в православном календаре (Святцах)
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Регуляция работы сердца и кровеносных сосудов конспект. Регуляция работы сердца

    Регуляция работы сердца и кровеносных сосудов конспект. Регуляция работы сердца

    0050 Регуляция работы сердца

    Закон Старлинга - чем больше растянуто мышечное волокно, тем сильнее оно сокращается.

    Закон сердечного ритма - чем больше приток крови, тем больше сила и частота сердечных сокращений.

    Закон все или ничего – сердце реагирует только на пороговое раздражение и отвечает по максимуму

    Главную роль в регуляции деятельности сердца играют нервные и гуморальные влияния.

    Нервная регуляция деятельности сердца осуществляется эфферентными ветвями блуждающего и симпатического нервов. Различные волокна этих нервов по-разному влияют на работу сердца. Раздражение одних волокон блуждающего нерва вызывает урежение сердцебиений, а раздражение других — их ослабление. Некоторые волокна симпатического нерва учащают ритм сердечных сокращений, другие — усиливают их.

    Импульсы с нервных окончаний передаются на сердце посредством медиаторов. Для блуждающих нервов медиатором служит ацетилхолин, для симпатических — норадреналин.

    Центры блуждающих нервов постоянно находятся в состоянии некоторого возбуждения, степень, которого изменяется под влиянием центростремительных импульсов от разных рецепторов тела. Тонус центров симпатических нервов выражен слабее. Возбуждение в этих центрах усиливается при эмоциях и мышечной деятельности, что ведет к учащению и усилению сердечных сокращений.

    В рефлекторной регуляции работы сердца участвуют центры продолговатого и спинного мозга, гипоталамуса, мозжечка и коры больших полушарий, а также рецепторы некоторых сенсорных систем (зрительной, слуховой, двигательной, вестибулярной). Большое значение в регуляции сердца и кровеносных сосудов имеют импульсы от сосудистых рецепторов, расположенных в рефлексогенных зонах. Такие же рецепторы имеются и в самом сердце. Часть этих рецепторов воспринимает изменения давления в сосудах (барорецепторы). Хеморецепторы возбуждаются в результате сдвигов химического состава плазмы крови при увеличении в ней рСО2 или снижения рО2.

    На деятельность сердечно-сосудистой системы влияют импульсы от рецепторов легких, кишечника, раздражение тепловых и болевых рецепторов, эмоциональных и условнорефлекторных воздействий. В частности, при повышении температуры тела на 1 °С частота сердцебиений возрастает на 10 ударов в 1 минуту.

    Гуморальная регуляция деятельности сердца осуществляется путем воздействия на него химических веществ, находящихся в крови. Гуморальные влияния на сердце могут оказываться гормонами, продуктами распада углеводов и белков, изменениями рН, ионов калия и кальция. Адреналин, норадреналин и тироксин усиливают работу сердца, ацетилхолин — ослабляет. Снижение рН, увеличение уровня мочевины и молочной кислоты повышают сердечную деятельность. При избытке ионов калия урежается ритм и уменьшается сила сокращений сердца, его возбудимость и проводимость. Высокая концентрация калия приводит к расслалению миокарда и остановке сердца в диастоле. Ионы кальция учащают ритм и усиливают сердечные сокращения, повышают возбудимость и проводимость миокарда; при избытке кальция сердце останавливается в систоле.

    0051 ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ (ГЕМОДИНАМИКА)

    Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов.

    Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от от объема циркулирующей крови и ее вязкости. При уменьшении диаметра сосуда в два раза сопротивление в нем возрастает в 16 раз. Сопротивление кровотоку в артериолахв 106 раз превышает сопротивление ему в аорте.

    Различают объемную и линейную скорости движения крови.

    Объемной скоростью кровотока называют количество крови, которое протекает за 1 минуту через всю кровеносную систему. Эта величина соответствует МОК и измеряется в миллилитрах в 1 мин. Как общая, так и местная объемные скорости кровотока непостоянны и существенно меняются при физических нагрузках.

    Линейной скоростью кровотока называют скорость движения частиц крови вдоль сосудов. Эта величина, измеренная в сантиметрах в 1 с, прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносного русла. Линейная скорость неодинакова: она больше в центре сосуда и меньше около его стенок, выше в аорте и крупных артериях и ниже в венах. Самая низкая скорость кровотока в капиллярах, общая площадь сечения которых в 600-800 раз больше площади сечения аорты. О средней линейной скорости кровотока можно судить по времени полного кругооборота крови. В состоянии покоя оно составляет 21 -23 с, при тяжелой работе снижается до 8-10 с.

    При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного.

    На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее — диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления.

    Величина артериального давления зависит от сократительной силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Уровень систолического давления зависит, в первую очередь, от силы сокращения миокарда. Отток крови из артерий связан с сопротивлением в периферических сосудах, их тонусом, что в существенной мере определяет уровень диастолического давления. Таким образом, давление в артериях будет тем выше, чем сильнее сокращения сердца и чем больше периферическое сопротивление (тонус сосудов).

    Артериальное давление у человека может быть измерено прямым и косвенным способами. В первом случае в артерию вводится полая игла, соединенная с манометром. Это наиболее точный способ, однако он мало пригоден для практических целей. Второй, так называемый манжеточный способ, был предложен Рива-Роччив 1896 г. и основан на определении величины давления, необходимой для полного сжатия артерии манжетой и прекращения в ней тока крови. Этим методом можно определить лишь величину систолического давления. Для определения систолического и диастолического давления применяется звуковой или аускультативный способ. При этом способе также используется манжета и манометр, о величине давления судят по возникновению и исчезновению звуков, выслушиваемых на артерии ниже места наложения манжеты (звуки возникают лишь тогда, когда кровь течет по сжатой артерии). В последние годы для измерения артериального давления у человека на расстоянии используются радиотелеметрические приборы.

    В состоянии покоя у взрослых здоровых людей систолическое давление в плечевой артерии составляет 110-120 ммрт. ст., диас-толическое — 60-ЗОммрт. ст. Артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин — гипертоническим, а ниже 100/60 мм рт. ст. — гипотоническим. Разница между систолическим и диастолическим давлениями называется пульсовым давлением или пульсовой амплитудой; ее величина в среднем равна 40-50 мм рт. ст.

    В капиллярах происходит обмен веществ между кровью и тканями, поэтому количество капилляров в организме человека очень велико. Оно больше там, где интенсивнее метаболизм. Кровяное давление в разных капиллярах колеблется от 8 до 40 мм рт. ст.; скорость кровотока в них небольшая — 0.3-0.5 мм с"1.

    В начале венозной системы давление крови равно 20-30 мм рт. ст., в венах конечностей — 5-10 мм рт. ст. и в полых венах оно колеблется около 0. Стенки вен тоньше, и их растяжимость в 100-200раз больше, чем у артерий. Поэтому емкость венозного сосудистого русла может возрастать в 5-6 раз даже при незначительном повышении давления в крупных венах. В этой связи вены называют емкостными сосудами в отличие от артерий, которые оказывают большое сопротивление току крови и называются резистивными сосудами (сосудами сопротивления). Линейная скорость кровотока даже в крупных венах меньше, чем в артериях. Например, в полых венах скорость движения крови почти в два раза ниже, чем в аорте. Участие дыхательных мышц в венозном кровообращении образно называется дыхательным насосом, скелетных мышц— мышечным насосом. При динамической работе мышц движению крови в венах способствуют оба этих фактора. При статических усилиях приток крови к сердцу снижается, что приводит к уменьшению сердечного выброса, падению артериального давления и ухудшению кровоснабжения головного мозга.

    В легких имеется двойное кровоснабжение. Газообмен обеспечивается сосудами малого круга кровообращения, т. е. легочными артериями, капиллярами и венами. Питание легочной ткани осуществляется группой артерий большого круга — бронхиальными артериями, отходящими от аорты.

    Сопротивление току крови в сосудах малого круга кровообращения примерно в 10раз меньше, чем в сосудах большого круга. Это в значительной мере обусловлено широким диаметром легочных артериол. В связи с пониженным сопротивлением правый желудочек сердца работает с небольшой нагрузкой и развивает давление в несколько раз меньшее, чем левый. Систолическое давление в легочной артерии составляет 25-30 мм рт. ст., диастолическое — 5-10 мм рт. ст.

    Капиллярная сеть малого круга кровообращения имеет поверхность около 140м2. Одномоментно в легочных капиллярах находится от 60 до 90 мл крови Эритроциты проходят через легкие за 3-5 с, находясь в легочных капиллярах (где происходит газообмен) в течение 0.7 с, при физической работе — 0.3с. Большое количество сосудов в легких приводит к тому, что кровоток здесь в 100 раз выше, чем в других тканях организма.

    Кровоснабжение сердца осуществляется коронарными, или венечными, сосудами. В сосудах сердца кровоток происходит преимущественно во время диастолы. В период систолы желудочков сокращение миокарда настолько сдавливает расположенные в нем артерии, что кровоток в них резко снижается.

    В покое через коронарные сосуды протекает в 1 минуту 200-250 мл крови, что составляет около 5% МОК. Во время физической работы коронарный кровоток может возрасти до 3-4 л -мин"1. Кровоснабжение миокрада в 10-15 раз интенсивнее, чем тканей других органов. Через левую венечную артерию осуществляется 85% коронарного крвотока, черз правую—15%. Венечные артерии являются концевыми и имеют мало анастомозов, поэтому их резкий спазм или закупорка приводят к тяжелым последствиям.

    Регуляция деятельности сердца и сосудов. Насосная функция сердца обеспечивает определенное давление в сосудах, которое необходимо для доставки крови во внутренние органы. У здорового человека артериальное давление в условиях покоя сравнительно устойчиво: систолическое (максимальное) давление не превышает 140, диастолическое (минимальное) - 90 мм рт. ст. Постоянное давление в крупных сосудах поддерживается благодаря сложному взаимодействию двух факторов — количества поступающей в минуту крови и сопротивления, которое оказы­вают току крови сосуды. Обе эти величины достаточно изменчивы даже в физиологических условиях. Так, минутный объем кровообращения зависит от числа, силы сокращений сердца и ряда других факторов. Сопротивление кровотоку преимущественно определяется напряжением (тонусом) мелких артерий (артериол), которые способны активно изменять свой просвет и таким образом регулировать количество поступающей в ткани крови. Даже в условиях обычной деятельности человека важнейшие показатели - минутный объем кровообращения и сопротивление кровотоку – изменяются. Так, при больших физических нагрузках (например, беге) минутный объем кровообращения возрастает в несколько раз. Однако артериальное давление при этом повы­шается незначительно из-за уменьшения сопротивления кровотоку в результате расширения сосудов работающей мускулатуры. Минимальные изменения артериального давления в физиологи­ческих условиях (физическое или эмоциональное напряжение) свидетельствуют о наличии сложных механизмов его регуляции.

    Решающая роль среди этих механизмов принадлежит нервной системе. Нейрогенные механизмы контроля артериального давления быстро реагируют на его изменения. Начальным звеном этого самоконтролирующего механизма являются специальные нервные окончания (рецепторы), которые расположены преимущественно в участке аорты близ ее отхождения от сердца. Эти рецепторы воспринимают колебания стенки аорты (ее растяжение) при поступлении в нее крови в момент сокращения сердца. При увеличении количества поступающей крови или же повышении давления в аорте стенка ее растягивается, что и стимулирует рецепторы давления (барорецепторы).

    От барорецепторов сигналы поступают в центральную нервную систему, где они анализируются, и ответ по специальным нервам направляется к сердцу и сосудам. Увеличение импульсации от барорецепторов в конечном итоге приводит к уменьшению числа сокращений сердца и расширению артерий, что способствует возвращению артериального давления к исходному уровню. Иными словами, у здорового человека нейрогенный контроль артериального давления может рассматриваться как замкнутая схема автоматического регулирования основной функции системы (в данном случае - сердечно-сосудистой). Безусловно, регулирующие влияния нервной системы на сердечно-сосудистую постоянно меняются как за счет изменения активности центральной нервной системы, в том числе и коры головного мозга, так и за счет большого количества импульсов, поступающих в центральную нервную систему от различных органов. Так, при эмоциональном напряжении (стресс) резко уменьшается тормозящее действие центральной нервной системы на нейрогенный механизм регуляции артериального давления и оно повышается. Это влияние осуществляется через так называемые вегетативные отделы нервной системы (симпатические нервные волокна) и блуждающий нерв. В окончаниях симпатических нервных волокон содержится специальное вещество (медиатор) - норадреналин. Его выделение из нервных окончаний резко увеличивается при волнении, физической нагрузке и некоторых других состояниях организма. В этих же условиях в специальных эндокринных железах - надпочечниках - усиливается синтез и выброс в кровь еще одного гормона - адреналина. Адреналин и норадреналин повышают сократимость сердца, частоту его сокращений, повышают тонус мелких сосудов. Следствием этих изменений сердечно-сосудистой системы является повышение артериального давления. Нейрогенные влияния могут существенно изменять деятельность ряда органов, имеющих отношение к регуляции артериального давления. К числу этих органов прежде всего относятся почки, которые выделяют в кровь вещества, как повышающие, так и понижающие артериальное давление. Кроме того, влияние почек на уровень артериального давления связано с их способностью удалять из организма натрий и воду. Целый ряд биологически активных веществ, изменяющих артериальное да­вление, выделяется эндокринными органами внутренней секреции (надпочечники, гипофиз), а также синтезируется в тканях (простатландины).

    У здорового человека повышающие и понижающие уровень артериального давления воздействия уравновешены. Увеличение активности факторов, повышающих артериальное давление в по­кое, сразу же приводит к увеличению активности систем противоположного действия. Результатом этих сложных и непрерывно изменяющихся взаимодействий является относительно постоян­ный уровень артериального давления. В необычных ситуациях (сильное физическое или эмоциональное напряжение) артериальное давление может значительно превышать нормальный уро­вень, однако по окончании напряжения оно быстро возвращается к исходному уровню. Наличием столь сложной системы контроля артериального давления и необходимостью его постоянного приспособления к запросам организма объясняется частое возникновение нарушений в этой системе, приводящее к повышению артериального давления и развитию гипертонической болезни.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    хорошую работу на сайт">

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА И СОСУДОВ

    Регуляция работы сердца

    Автоматия сердца- способность клеток сердца к самовозбуждению, без каких- либо воздействий извне.

    Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время. У плода человека первые сокращения сердца возникают на 19-й или 20-й день внутриутробного развития, когда парные закладки сердца сливаются в одну сердечную трубку, все клетки которой способны к самовозбуждению. По мере формирования эмбрионального сердца в его ткани происходит разделение на сократительный миокард и проводящую систему сердца. Способность генерировать автоматический ритм закрепляется за узловой тканью проводящей системы, образующей узлы автоматии -- синусно-предсердный (так называемый водитель ритма сердца, или пейсмекер) и предсердно-желудочковый.

    Потенциально все элементы проводящей системы в разной степени способны к генерации автоматического ритма. Существует так называемый градиент автоматии. Наиболее высокой способностью к автоматии обладает синусно-предсердный узел, где генерируется ритм, который усваивается остальными элементами проводящей системы и сократительным миокардом. У человека он равен 60-70 уд/мин в состоянии покоя. Если работа синусно-предсердного узла нарушена, функция водителя ритма переходит к предсердно-желудочковому узлу, который генерирует более медленный сердечный ритм (около 40 уд/мин), но он в состоянии обеспечить нормальную работу сердца и нормальное кровоснабжение организма. Другие элементы проводящей системы, и в первую очередь пучок Гиса, также способны к автоматии, но генерируемое здесь возбуждение возникает с еще более низкой частотой и проявляется только в условиях патологии, например при гипоксии, и ишемии. В этих условиях ненормальные очаги автоматии могут формироваться и в сократительных клетках сердца, создавая источники аритмии сердца.

    Способность клетки генерировать автоматический ритм в значительной мере определяется величиной мембранного потенциала, при котором активируются ионные каналы, обеспечивающие самовозбуждение клетки (см. Потенциалы действия сердца). Для клеток узловой ткани характерен более низкий уровень мембранного потенциала, чем для сократительных клеток сердца. Гипоксия и ишемия вызывают снижение мембранного потенциала в сократительных клетках сердца и делают возможным возникновение в них автоматии.

    Узловая ткань позвоночных имеет мышечное происхождение -- в этом случае принято говорить о миогенной автоматии. У части беспозвоночных животных, а именно у ракообразных, возбуждение возникает в нервных ганглиях, расположенных на поверхности сердца, откуда оно передается сократительным клеткам. В этом случае говорят о нейрогенном ритме (автоматии). Нейрогенная автоматия сердца, вероятно, явление вторичное, т. к. личинки животных, обладающих нейрогенной автоматией, имеют миогенный сердечный ритм, а после экспериментального удаления нервных ганглиев в сердце на миогенный ритм переходят и взрослые ракообразные.

    Точно определить местонахождение водителя ритма в сердце и характер его автоматии позволяет регистрация потенциалов действия сердца. Потенциалы действия всех автоматических структур, и миогенных и нейрогенных, имеют предымпульсную деполяризацию, выводящую мембранный потенциал этих клеток на уровень возникновения распространяющегося электрического импульса. Потенциалы действия нейрогенных сердец имеют свою особенность: на плато потенциала действия сократительной клетки сердца у них накладывается разряд автоматических клеток нервного ганглия, придавая ему своеобразное очертание.

    При разобщении клеток узловой ткани друг от друга каждая из них возбуждается с собственной частотой, отличной от частоты интактного водителя ритма. Единый ритм работы всех клеток, составляющих водитель ритма, формируется в результате синхронизации, происходящей на основе электрического и механического взаимодействия этих клеток.

    Нервная регуляция деятельности сердца

    Влияние нервной системы на деятельность сердца осуществляется за счет блуждающих и симпатических нервов. Эти нервы относятся к вегетативной нервной системе. Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I -- V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.

    Слабые раздражения блуждающих нервов приводят к замедлению ритма сердца, сильные - обусловливают остановку сердечных сокращений. После прекращения раздражения блуждающих нервов деятельность сердца может вновь восстановиться.

    При раздражении симпатических нервов происходит учащение ритма сердца и увеличивается сила сердечных сокращений, повышается возбудимость и тонус сердечной мышцы, а также скорость проведения возбуждения.

    Тонус центров сердечных нервов. Центры сердечной деятельности, представленные ядрами блуждающих и симпатических нервов, всегда находятся в состоянии тонуса, который может быть усилен или ослаблен в зависимости от условий существования организма.

    Тонус центров сердечных нервов зависит от афферентных влияний, идущих от механо- и хеморецепторов сердца и сосудов, внутренних органов, рецепторов кожи и слизистых оболочек. На тонус центров сердечных нервов оказывают воздействие и гуморальные факторы.

    Есть и определенные особенности в работе сердечных нервов. Одна из низ проявляется в том, что при повышении возбудимости нейронов блуждающих нервов снижается возбудимость ядер симпатических нервов. Такие функционально взаимосвязанные отношения между центрами сердечных нервов способствуют лучшему приспособлению деятельности сердца к условиям существования организма.

    Рефлекторные влияния на деятельность сердца. Эти влияния я условно разделила на: осуществляемые с самого сердца; осуществляемые через вегетативную нервную систему. Теперь поподробнее о каждых:

    Рефлекторные влияния на деятельность сердца осуществляются с самого сердца. Внутрисердечные рефлекторные влияния проявляются в изменениях силы сердечных сокращений. Так, установлено, что растяжение миокарда одного из отделов сердца приводит к изменению силы сокращения миокарда другого его отдела, гемодинамически с ним разобщенного. Например, при растяжении миокарда правого предсердия наблюдается усиление работы левого желудочка. Этот эффект может быть результатом только рефлекторных внутрисердечных влияний.

    Обширные связи сердца с различными отделами нервной системы создают условия для разнообразных рефлекторных воздействий на деятельность сердца, осуществляемых через вегетативную нервную систему.

    В стенках сосудов располагаются многочисленные рецепторы, обладающие способностью возбуждаться при изменении величины кровяного давления и химического состава крови. Особенно много рецепторов имеется в области дуги аорты и каротидных синусов (небольшое расширение, выпячивание стенки сосуда на внутренней сонной артерии). Их еще называют сосудистые рефлексогенные зоны.

    При уменьшении артериального давления происходит возбуждение этих рецепторов, и импульсы от них поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов снижается возбудимость нейронов ядер блуждающих нервов, что усиливает влияние симпатических нервов на сердце (об этой особенности я уже говорила выше). В результате влияния симпатических нервов ритм сердца и сила сердечных сокращений увеличиваются, сосуды суживаются, что является одной из причин нормализации артериального давления.

    При увеличении артериального давления нервные импульсы, возникшие в рецепторах области дуги аорты и каротидных синусов, усиливают активность нейронов ядер блуждающих нервов. Обнаруживается влияние блуждающих нервов на сердце, замедляется ритм сердца, ослабляются сердечные сокращения, сосуды расширяются, что также является одной из причин восстановления исходного уровня артериального давления.

    Таким образом, рефлекторные влияния на деятельность сердца, осуществляемые с рецепторов области дуги аорты и каротидных синусов, следует отнести к механизмам саморегуляции, проявляющимся в ответ на изменение величины артериального давления.

    Возбуждение рецепторов внутренних органов, если оно достаточно сильное, может изменить деятельность сердца.

    Естественно необходимо отметить влияние коры головного мозга на работу сердца. Влияние коры головного мозга на деятельность сердца. Кора головного мозга регулирует и корригирует деятельность сердца через блуждающие и симпатические нервы. Доказательством влияния коры головного мозга на деятельность сердца является возможность образования условных рефлексов. Условные рефлексы на сердце достаточно легко образуются у человека, а также у животных.

    Можно привести пример опыта с собакой. У собаки образовывали условный рефлекс на сердце, используя в качестве условного сигнала вспышку света или звуковое раздражение. Безусловным раздражителем являлись фармакологические вещества (например, морфин), типично изменяющие деятельность сердца. Сдвиги в работе сердца контролировали путем регистрации ЭКГ. Оказалось, что после 20--30 инъекций морфина комплекс раздражения, связанных с введением этого препарата (вспышка света, лабораторная обстановка и т. д.), приводил к условно-рефлекторной брадикардии. Замедление ритма сердца наблюдалось и тогда, когда животному вместо морфина вводили изотонический раствор хлорида натрия.

    У человека различные эмоциональные состояния (волнение, страх, гнев, злость, радость) сопровождаются соответствующими изменениями в деятельности сердца. Это также свидетельствует о влиянии коры головного мозга на работу сердца.

    Гуморальная регуляция работы сердца

    Факторы гуморальной регуляции делят на две группы:

    1) вещества системного действия;

    2) вещества местного действия.

    К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

    Гормон адреналин увеличивает силу и частоту сердечных сокращений.

    Тироксин (гормон щитовидной железы) усиливает работу сердца.

    Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

    Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

    Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

    Вещества местного действия действуют там, где вырабатываются.

    Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

    Миогенный тонус возникает, когда некоторые глад-комышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение.

    Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС.

    В настоящее время выделяют три механизма регуляции сосудистого тонуса - местный, нервный, гуморальный.

    Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

    Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора.

    Сосудорасширяющие нервы могут быть различного происхождения:

    1) парасимпатической природы;

    2) симпатической природы;

    3) аксон-рефлекс.

    Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

    К веществам местного действия относятся ионы Ca, Na, Cu.

    регуляция артериальный давление сердце

    Регуляция деятельности сердечно-сосудистой системы

    Работа ССС направлена на экономное распределение ограниченного запаса крови и снабжение кислородом и питательными веществами клеток тканей и органов, работающих в одно и то же время с разной интенсивностью. Регуляция кровоснабжения направлена на согласование работы сердца с определенным суммарным сопротивлением сосудов. Существуют определенные отношения между степенью наполнения кровью сердца, силой сокращения и частотой его работы.

    В регуляции уровня АД принимают участие разные отделы мозга, но особенно велика роль продолговатого мозга. В нем находится сосудодвигательный центр, регулирующий сужение и расширение артериальных сосудов. Артерии и артериолы находятся постоянно под влиянием нервных импульсов этого центра, определяющих степень их сужения и расширения. В свою очередь его тонус зависит от импульсов, приходящих с рецепторов, которые находятся как в самой сосудистой системе, так и вне ее - в коже, селезенке, почках, легких и т.д.

    Механизмы кратковременной регуляции АД

    В регуляции работы ССС наиболее важны две группы рефлексов, которые поддерживают относительно постоянный уровень АД. Рецепторы, воспринимающие изменение Ад, называются барорецепторами (прессорецепторами). Важнейшими барорецепторами являются область дуги аорты и картидного синуса, расположенного в области разветвления общей сонной артерии. Афферентные волокна от барорецепторов каротидного синуса идут в составе ветви языкоглоточного нерва и от аорты в составе блуждающего нерва. По этим же волокнам черепно-мозговых нервов проходят афферентные волокна от хеморецепторов. Барорецепторы передают информацию не только о среднем Ад, но также об амплитуде колебаний и крутизне его нарастания, а следовательно, и о ритме сердечных сокращений. Участки, где расположены рецепторы, воспринимающие изменения АД, называются сосудистыми рефлексогенными зонами.

    Рефлексогенные зоны первой группы рефлексов находятся в предсердиях, дуге аорты, сонных артериях. Повышение давления в них ведет к возбуждению барорецепторов. Импульсы от них по центростремительным нейронам достигают сосудодвигательного центра, от которого по центробежным нейронам нервные импульсы поступают к сосудам и сердцу. В результате урежения деятельности сердца и расширения сосудов наступает рефлекторное снижение артериального давления. Такая реакция имеет приспособительное значение, так как предотвращает повышение давления в сосудистой системе. С тех же рецептивных полей при понижении артериального давления возникает противоположный рефлекс, результатом которого является повышение артериального давления.

    Рефлексогенные зоны второй группы рефлексов находятся в месте впадения полых вен в правое предсердие и в нем самом. Повышение давления вызывает усиление работы сердца, сужение сосудов и повышение артериального давления. Если бы сила сокращения сердца не увеличивалась, в легких мог бы возникнуть застой крови, что привело бы к резкому ухудшению газообмена.

    Поддержание среднего уровня артериального давления очень важно для организма, так как при значительном понижении его нарушаются процессы нормального кровоснабжения мозга, сердца, почек и других органов, а при резком его повышении может наступить кровоизлияние в результате разрыва стенок сосудов.

    Перечисленные механизмы регуляции артериального давления относятся к механизмам кратковременного действия, т.е. при быстрых колебаниях артериального давления.

    Механизмы длительной регуляции артериального давления

    Однако существуют механизмы и более длительного действия, чье влияние продолжается часы и многие дни. Конечно всегда их четко разграничить не удается, т.к. механизмы кратковременной регуляции плавно переходят в процессы длительной регуляции артериального давления. В процессах длительной регуляции принимают участие системы вазопрессина (антидиуретического гормона), альдостерона и почечного контроля за объемом крови. Эти системы тесно связаны между собой.

    Рецепторы предсердий принимают участие в регуляции объема крови. Увеличение объема крови в них вызывает увеличение импульсации, и импульсы поступают в центры осморегуляции, которые находятся в гипоталамусе. В результате секретируется антидиуретический гормон. В случае увеличения объема крови количество выделяемого гормона уменьшается, и в связи с этим уменьшается обратное всасывание - реабсорбция в почках и количество выделяемой жидкости из организма увеличивается. А это снижает артериальное давление. Если же объем крови уменьшается, то процесс реабсорбции в почках уменьшается за счет увеличения выделения антидиуретического гормона. Поэтому уменьшается выделение жидкости почками.

    При падении артериального давления увеличивается выделение ренина почками, который соединяется с ангиотензином (см. почки). В результате артериальное давление повышается. Действие ренин-ангиотензина продолжается в течении длительного времени.

    Ангиотензин является главным стимулятором выработки альдостерона корой надпочечников. Под действием альдостерона увеличивается реабсорбция Ка+, а вследствие этого и воды. Это ведет к задержке воды в организме и значительному повышению артериального давления. Эффект действия альдостерона начинает проявляться спустя несколько часов и достигает максимума через несколько дней.

    Следовательно, при кратковременных колебаниях давления и объема крови включаются сосудистые реакции, при длительных же сдвигах преобладают компенсаторные изменения объема крови. В последнем случае изменяется содержание в крови воды и электролитов.

    Помимо нервной регуляции большое значение имеет изменение концентрации С02 и 02. При изменении химического состава крови происходит возбуждение хеморецепторов, находящихся в зоне разветвления сонной артерии. Это ведет к изменению артериального давления.

    Центральная регуляция артериального давления

    В регуляции деятельности сердечно-сосудистой системы принимают участие различные отделы центральной нервной системы.

    На кровообращение влияют в наибольшей степени двигательные зоны коры как моторные, так и премоторные. Существенно влияние нижних поверхностей лобных и теменных долей. Оно может привести как к повышению, так и понижению артериального давления. Это было показано на следующих опытах. При раздражении двигательных зон коры, которые вызывают сокращения отдельных мышечных групп скелетной мускулатуры, происходит одновременное локальное увеличение кровотока в этих мышцах. Следовательно, кора головного мозга согласует сокращения мышц и их кровоснабжение. Влияния коры могут преобладать над противоположными реакциями сердца и артериального давления, обусловленными гомеостатическими безусловными рефлексами поддержа- ния артериального давления. От коры головного мозга импульсы поступают в гипоталамус, средний мозг. И далее от этих областей к стволовым центрам.

    В регуляции гемодинамики принимает участие гипоталамус в связи с тем, что он является высшим центром вегетативной нервной системы. Его влияние осуществляется по эфферентным вегетативным волокнам. В промежуточном мозге происходит согласование двигательных и гемодинамических реакций при различных эмоциональных реакциях. Гипоталамус может оказывать на сердечно-сосудистую систему как тормозящее, так и возбуждающее влияние. Даже в условиях покоя гипоталамус оказывает постоянное влияние как на тоническую, так и на рефлекторную деятельность стволовых центров. В связи с тем, что гипоталамус является центром терморегуляции и поэтому регулирует теплообмен путем расширения и сужения сосудов кожи, он также принимает участие в регуляции деятельности сердечно-сосудистой системы при изменениях температуры тела.

    В области ствола мозга, в ретикулярной формации продолговатого мозга и в мосте находятся сосудодвигательные стволовые центры. Они могут вызывать как прессорные реакции, ведущие к повышению артериального давления, так и депрессорные, ведущие к падению уровня артериального давления. На сосудодвигательные центры оказывают также влияние дыхательные центры и высшие отделы ЦНС. Регуляторные влияния этих стволовых центров осуществляются, главным образом, путем изменения тонуса симпатических нервов, тонус которых также зависит от афферентных импульсов от сердца и сосудов.

    Список используемой литературы

    1. Семенов Е.В. «Физиология и анатомия» Москва, 1997

    Размещено на Allbest.ru

    Подобные документы

      Понятие кровяного давления как гидравлической силы, с которой кровь воздействует на стенки сосудов. Определение давления крови, обуславливающие его величину факторы. График изменения артериального давления в различных отделах сердечно-сосудистой системы.

      презентация , добавлен 19.03.2015

      Сосудодвигательный центр продолговатого мозга. Основные рефлексогенные зоны сердечно-сосудистой системы. Классификация рефлексов на сердечно-сосудистую систему. Импульсация барорецепторов синокаротидной зоны. Депрессорный рефлекс: его анализ и компоненты.

      презентация , добавлен 12.01.2014

      Кривая артериального давления. Методы исследования артериального давления у человека: метод Короткова, осциллография. Возрастные нормы. Миогенный или базальный тонус. Опыт Клода Бернара. Механизм сосудодвигательных реакций и сосудистые рефлексы.

      презентация , добавлен 13.12.2013

      Влияние длительного и стойкого повышения артериального давления, вызванного нарушением работы сердца и регуляции тонуса сосудов, на самочувствие человека. Факторы риска, симптоматика и профилактика возможных осложнений гипертонической болезни сердца.

      презентация , добавлен 27.12.2013

      Роль сердца в кровоснабжении органов и тканей; принципы регуляции сердечного выброса. Конечно-диастолический объем желудочка (преднагрузка и постнагрузка). Инотропное состояние (сократимость миокарда). Иннервация и миогенная регуляция деятельности сердца.

      реферат , добавлен 29.03.2014

      Семиотика поражений сердечно-сосудистой системы, ее анатомо-физиологические особенности и запасная сила у детей. Семиотика боли в области сердца (кардиалгии), изменений артериального давления, нарушений сердечного ритма. Семиотика шумов и пороков сердца.

      курсовая работа , добавлен 12.12.2013

      Гемодинамические факторы, определяющие величину артериального давления. Уровни артериального давления. Физиологические механизмы регуляции артериального давления. Эссенциальная артериальная гипертензия. Симптоматические артериальные гипертензии.

      дипломная работа , добавлен 24.06.2011

      Общая характеристика строения и совершенствования проводящей системы сердца по мере роста ребенка. Рассмотрение особенностей нервной регуляции сердечно-сосудистой системы. Увеличение длины внутриорганных сосудов, их диаметра, количества анастомозов.

      презентация , добавлен 06.12.2015

      Общие сведения о коронарных артериях. Кровеносная сеть сердца. Его гуморальная регуляция. Изменение кровотока по коронарным артериям в связи с сердечным циклом. Обзор основных болезней сердца и сосудов. Действие различных веществ на коронарные артерии.

      презентация , добавлен 28.12.2013

      Общие сведения о заболеваниях сердечно-сосудистой системы. Основные синдромы, соответствующие основным жалобам. Недостаточность правых отделов сердца и обусловленный ею застой в органах системы. Регуляция болевой чувствительности. Стенокардия и одышка.

    Функция сердца, есть сила и частота его сокращений, изменяется в зависимости от состояния организма и условий, в которых организм находится. Обеспечиваются эти изменения регуляторными механизмами, которые можно разделить на миогенные (связанные с физиологическими свойствами собственно структур серйя), гуморальные (влияние различных физиологически активных веществ, производятся непосредственно в сердце и организме) и нервные (осуществляются с помощью интра-и экстракардиальные системы).
    Миогенные механизмы. Закон Франка-Старлинга. Благодаря свойствам сократительных миофиламенты миокард может изменять силу сокращения зависимости от степени наполнения полостей сердца. При постоянной ЧСС сила сердечных сокращений увеличивается с ростом венозного притока крови. Это наблюдается, например, при росте конечно-диастолического объема с 130 до 180 мл.
    Предполагают, что в основе механизма Франка-Старлинга лежит первоначальное расположение актиновых и миозинових филаментов в саркомири. Скольжение нитей друг относительно друга осуществляется при взаимном перекрытии благодаря создаваемых поперечным мостикам. Если эти нити растянуты, то количество возможных «шагов» возрастет, следовательно, увеличится и сила следующего сокращения (положительный инотропный эффект). Но дальнейшее растяжение может привести к тому, что актиновые И миозиновые нити уже не будут перекрываться и не смогут образовать мостики для сокращения. Поэтому
    чрезмерное растяжение мышечных волокон приведет к уменьшению силы сокращения, т.е. отрицательный инотропный эффект. Это наблюдается при увеличении конечно-диастолического объема выше 180 мл.
    Механизм Франка-Старлинга обеспечивает увеличение УО при повышении венозного притока крови в соответствующий отдел (правый или левый) сердца. Он способствует усилению сердечных сокращений при возрастании сопротивления выброса крови в сосуды. Последнее обстоятельство может быть следствием повышения диастолического давления в аорте (легочной артерии) или сужение этих сосудов (коарктации). В данном случае можно представить такую последовательность развития изменений. Повышение давления в аорте приводит к резкому увеличению коронарного кровотока, при котором механически растягиваются кардиомиоциты и, согласно механизму Франка-Старлинга, в их усиленного сокращения, повышение УО крови. Это явление носит название эффекта Анрепа.
    Механизм Франка-Старлинга и эффект Анрепа обеспечивает авторегуляции функции сердца при многих физиологических состояниях (например, при физической нагрузке). В таком случае МОК может быть увеличен на 13-15 л / мин.
    Хроноинотропия. Зависимость силы сокращения сердца от частоты его деятельности (лестница Боудича) является фундаментальным свойством миокарда. Сердце человека и большинства животных, за исключением крыс в ответ на повышение ритма реагирует увеличением силы сокращений и, наоборот, с уменьшением ритма сила сокращений падает. Механизм этого феномена связан с накоплением или падением в миоплазми концентрации Са2 +, а также увеличением или уменьшением количества поперечных мостиков, что приводит положительные или
    негативные эффекты сердца.
    Гуморальные механизмы. Влияние инкреторной функции сердца.
    В сердце, особенно в его предсердиях, образуются биологически активные соединения (дигиталисоподибни факторы, катехоламины, продукты арахидоновой кислоты) и гормоны, в частности, предсердный натрийуретический и ренин-ангиотензин соединения. Оба гормоны участвуют в регуляции сократительной активности миокарда, МОК. Последний из них имеет специфические рецепторы, при воздействии на которые развивается гипертрофия миокарда.
    Влияние ионов на функцию сердца. Подавляющее большинство регуляторных влияний на функциональное состояние сердца связана с мембранными механизмами проводящей системы и кардиомиоцитов. Мембраны прежде всего отвечают за проникновение ионов. Состояние мембранных каналов, переносчиков, а также насосов, использующих энергию АТФ, влияет на концентрацию ионов в миоплазми. Существенная роль в трансмембранному обмене ионами принадлежит концентрационном градиента, который определяется прежде всего концентрацией их в крови, а следовательно, и в межклеточной жидкости. Увеличение внеклеточного концентрации ионов приводит к росту пассивного поступления их в кардиоциты, снижение - к «вымыванию». Вполне вероятно, что кардиогенный эффект ионов послужил одним из оснований для формирования в процессе эволюции сложных систем регуляции, что обеспечивает их гомеостаз в крови.
    Влияние Са2 +. Если содержание Са2 + в крови снижается, то возбудимость и сократимость сердца уменьшается, а при увеличении, напротив, повышается. Механизм этого явления связан с уровнем Са2 + в клетках проводящей системы и рабочего миокарда, в зависимости от которого развиваются положительные или отрицательные эффекты деятельности сердца.
    Влияние К +. При уменьшении концентрации К + (менее 4 ммоль / л) в крови возрастают пейсмекерного активность и ЧСС. При увеличении его концентрации эти показатели уменьшаются. Двукратное повышение содержания К + в крови может привести к остановке сердца. Этот эффект используется в клинической практике для остановки сердца во время проведения на ньрму хирургических операций. Механизм этих изменений связан с уменьшением соотношения между внешним и внутриклеточным к + повышением проницаемости мембран до К + снижением потенциала покоя.
    Влияние Na +. Снижение содержания Na + в крови может привести к остановке сердца. В основе этого влияния лежит нарушение градиентного трансмембранного транспорта Na +, Са2 + и сочетания возбудимости с сократимостью. Незначительное повышение уровня Na + благодаря Na + -, Са2 +-обменнике приведет к увеличению сократимости миокарда.
    Влияние гормонов. Ряд настоящих (адреналин, норадреналин, глюкагон, инсулин и др.). И тканевых (ангиотензин II, гистамин, серотонин и др.). Гормонов стимулируют функцию сердца. Механизм действия, например, норадреналина, серотонина и гистамина связан с соответствующими рецепторами: p-адренорецепторами, Нг-гистаминовых и серотониновых. В результате их взаимодействия увеличиваются концентрации аденилатциклазы, цАМФ, активизируются кальциевые каналы, накапливается внутриклеточный Са2 +, что и обусловливает итоге улучшения деятельности сердца.
    Кроме этого, гормоны, которые активизируют аденилатциклазу, образование цАМФ, могут действовать на миокард косвенно, через усиление расщепления гликогена и окисления глюкозы. Интенсифицируя образования АТФ, такие гормоны, как адреналин и глюкагон, также становятся причиной положительной игиотропнои реакции.
    Напротив, стимуляция образования цГМФ инактивирует Са2 +-каналы, что обуславливает негативное влияние на функции сердца. Таким образом действуют на кардиомиоциты медиатор парасимпатической нервной системы ацетилхолин, а также брадикинин. Но, кроме этого, ацетилхолин? К +-проницаемость и тем самым предопределяет гиперполяризацию. Последствием этих влияний является снижение скорости деполяризации, сокращение продолжительности ПД, снижение силы сокращения.
    Влияние метаболитов. Для нормального функционирования сердца нужна энергия. Поэтому все изменения коронарного кровотока, трофической функции крови сказываются на работе миокарда.
    При гипоксии, внутриклеточном ацидозе блокируются на мембране кардиомиоцитов медленные Са2 +-каналы, подавляя тем самым сократительную активность. В этом эффекте есть элементы самозащиты сердца, поскольку не потрачена на сокращение АТФ обеспечивает жизнеспособность кардиомиоцитов. И если гипоксия будет ликвидирована, то сохраненный кардиомиоцит начнет Знобь выполнять нагнетательную функцию.
    Увеличение в сердце концентраций креатинфосфата, свободных жирных кислот, молочной кислоты как источника энергии сопровождается повышением деятельности миокарда. Раскладывая молочную кислоту, сердце не только получает дополнительную энергию, но и способствует поддержанию постоянной рН крови.