Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Какую функцию выполняет сосудистая оболочка глаза. Сосудистая оболочка глаза - строение и функции, симптомы и болезни

    Какую функцию выполняет сосудистая оболочка глаза. Сосудистая оболочка глаза - строение и функции, симптомы и болезни

    Сосудистая оболочка состоит из трех частей : собственно сосудистой оболочки, цилиарного тела и радужки. Главная функция собственно сосудистой оболочки - питание сетчатки. Она также участвует в регуляции внутриглазного давления. Пигмент, содержащийся в этой оболочке, поглощает избыток света. В результате сокращения цилиарной мышцы (части сосудистой оболочки) может изменяться длина оптической оси глаза, таким образом сосудистая оболочка участвует в аккомодации.

    Радужная оболочка лежит перед хрусталиком. Имеет вид пластинки, в центре которой находится зрачок. В радужке выделяют 5 слоев:

    · передний эпителий - продолжение заднего эпителия роговицы;

    · наружный пограничный слой содержит рыхлую волокнистую неоформленную соединительную ткань с фибробластами и меланоцитами;

    · сосудистый слой также образован рыхлой волокнистой неоформленной соединительной тканью, содержит сосуды, меланоциты;

    · внутренний пограничный слой имеет такое же строение, как и наружный пограничный слой;

    · внутренний эпителий или пигментный слой.

    В радужке содержатся две мышцы: суживающая и расширяющая зрачок. Эти мышцы образованы мионевральной тканью и находятся: первая - в околозрачковой зоне сосудистого слоя, вторая - в сосудистом и частично внутреннем пограничном слоях. Мышца, суживающая зрачок , иннервируется парасимпатической нервной системой, а мышца, расширяющая зрачок - симпатической нервной системой.

    В месте прикрепления передней поверхности радужки к склере и реснитчатому телу (угол передней камеры глаза) находятся трабекулы, которые составляют гребенчатую связку . Между трабекулами имеются фонтановы пространства, через них осуществляется отток влаги из передней камеры глаза в шлеммов канал , который в свою очередь сообщается с венозным синусом. Венозный синус располагается циркулярно вокруг шлеммова канала. Шлеммов канал и венозный синус обеспечивают отток внутриглазной жидкости в венозную систему глаза. Сужение просвета канала при патологии ведет к повышению внутриглазного давления, что в тяжелых случаях вызывает гибель нейронов сетчатки и слепоту.



    Реснитчатое тело состоит из двух частей: внутренняя - цилиарная корона ; наружная - цилиарное кольцо . Основу цилиарного тела составляет цилиарная мышца, образованная гладкой мышечной тканью. Ее пучки имеют циркулярное направление во внутренних отделах и радиальное в наружных. От поверхности цилиарного тела отходят цилиарные отростки , к которым прикрепляются нити цинновой связки. Расслабление цилиарной мышцы вызывает натяжении цинновой связки и уплощение хрусталика. Сокращение мышцы, наоборот, вызывает расслабление цинновой связки, и хрусталик в силу своей упругости становится более выпуклым, его преломляющая способность увеличивается. Покрывающий цилиарные отростки двуслойный кубический эпителий образован внутренним слоем непигментированных и наружным слоем пигментированных клеток. Клетки каждого слоя имеют собственную базальную мембрану. Этот эпителий выполняет две основные функции:

    · вырабатывает внутриглазную жидкость;

    · участвует в формировании барьера между кровью и внутриглазной жидкостью.

    Нейронный состав зрительного анализатора:

    · 1 - нейрон - фоторецепторный;

    · 2 - нейрон - биполярный;

    · 3 - нейрон - ганглионарный;

    · тело 4 нейрона расположено в зрительном бугре, аксон этого нейрона идет к нейронам зрительной зоны коры больших полушарий.

    Гемоофтальмический барьер - это барьер между кровью в кровеносных капиллярах сетчатки, нейроцитами сетчатки и волокнами зрительного нерва. Гемоофтальмический барьер находится в трех различных участках:

    · между сосудами сосудистой оболочки и фоторецепторными нейронами. В состав данного барьера входят эндотелий и базальная мембрана капилляров сосудистой оболочки, соединительная ткань базальной пластинки, базальная мембрана пигментного эпителия, пигментный эпителий;

    · внутри сетчатки, этот барьер образован эндотелием внутрисетчаточных гемокапилляров и их базальной мембраной, наружной глиальной пограничной мембраной, образованной отростками астроцитарной глии сетчатки, отростками клеток-волокон Мюллера, окружающими как гемокапилляры, так и тела нейронов сетчатки.

    · в зрительном нерве, он образован эндотелием и базальной мембраной капилляров нерва.

    ЛЕКЦИЯ 15. Сердечно-сосудистая система

    1 . Функции и развитие сердечно-сосудистой системы

    Строение сердца

    Строение артерий

    Строение вен

    Микроциркуляторное русло

    Лимфатические сосуды

    1. Сердечно-сосудистая система образована сердцем, кровеносными и лимфатическими сосудами.

    Функции сердечно-сосудистой системы:

    · транспортная - обеспечение циркуляции крови и лимфы в организме, транспорт их к органам и от органов. Эта фундаментальная функция складывается из трофической (доставка к органам, тканям и клеткам питательных веществ), дыхательной (транспорт кислорода и углекислого газа) и экскреторная (транспорт конечных продуктов обмена веществ к органам выделения) функции;

    · интегративная функция - объединение органов и систем органов в единый организм;

    · регуляторная функция, наряду с нервной, эндокринной и иммунной системами сердечно-сосудистая система относится к числу регуляторных систем организма. Она способна регулировать функции органов, тканей и клеток путем доставки к ним медиаторов, биологически активных веществ, гормонов и других, а также путем изменения кровоснабжения;

    · сердечно-сосудистая система участвует в иммунных, воспалительных и других общепатологических процессах (метастазирование злокачественных опухолей и других).

    Развитие сердечно-сосудистой системы

    Сосуды развиваются из мезенхимы. Различают первичный и вторичный ангиогенез . Первичный ангиогенез или васкулогенез, представляет собой процесс непосредственного, первоначального образования сосудистой стенки из мезенхимы. Вторичный ангиогенез - формирование сосудов путем их отрастания от уже имеющихся сосудистых структур.

    Первичный ангиогенез

    Кровеносные сосуды образуются в стенке желточного мешка на

    3-ей неделе эмбриогенеза под индуктивным влиянием входящей в его состав энтодермы. Сначала из мезенхимы формируются кровяные островки. Клетки островков дифференцируются в двух направлениях:

    · гематогенная линия дает начало клеткам крови;

    · ангиогенная линия дает начало первичным эндотелиальным клеткам, которые соединяются друг с другом и образуют стенки кровеносных сосудов.

    В теле зародыша кровеносные сосуды развиваются позднее (во второй половине третьей недели) из мезенхимы, клетки которой превращаются в эндотелиоциты. В конце третьей недели первичные кровеносные сосуды желточного мешка соединяются с кровеносными сосудами тела зародыша. После начала циркуляции крови по сосудам их строение усложняется, кроме эндотелия в стенке образуются оболочки, состоящие из мышечных и соединительнотканных элементов.

    Вторичный ангиогенез представляет собой рост новых сосудов от уже образованных. Он делится на эмбриональный и постэмбриональный. После того, как в результате первичного ангиогенеза образовался эндотелий, дальнейшее формирование сосудов идет только за счет вторичного ангиогенеза, то есть путем отрастания от уже существующих сосудов.

    Особенности строения и функционирования разных сосудов зависит от условий гемодинамики в данной области тела человека, например: уровень артериального давления, скорость кровотока и так далее.

    Сердце развивается из двух источников: эндокард образуется из мезенхимы и вначале имеет вид двух сосудов - мезенхимных трубок, которые в дальнейшем сливаются с образованием эндокарда. Миокард и мезотелий эпикарда развиваются из миоэпикардиальной пластинки - части висцерального листка спланхнотома. Клетки этой пластинки дифференцируются в двух направлениях : зачаток миокарда и зачаток мезотелия эпикарда. Зачаток занимает внутреннее положение, его клетки превращаются в кардиомиобласты, способные к делению. В дальнейшем они постепенно дифференцируются в кардиомиоциты трех типов: сократительные, проводящие и секреторные. Из зачатка мезотелия (мезотелиобластов) развивается мезотелий эпикарда. Из мезенхимы образуется рыхлая волокнистая неоформленная соединительная ткань собственной пластинки эпикарда. Две части - мезодермальная (миокарда и эпикард) и мезенхимная (эндокард)соединяются вместе, образуя сердце, состоящее из трех оболочек.

    2. Сердце - это своеобразный насос ритмического действия. Сердце является центральным органом крово- и лимфообращения. В строении его имеются черты как слоистого органа (имеет три оболочки), так и паренхиматозного органа: в миокарде можно выделить строму и паренхиму.

    Функции сердца:

    · насосная функция - постоянно сокращаясь, поддерживает постоянный уровень артериального давления;

    · эндокринная функция - выработка натрийуретического фактора;

    · информационная функция - сердце кодирует информацию в виде параметров артериального давления, скорости кровотока и передает ее в ткани, изменяя обмен веществ.

    Эндокард состоит из четырех слоев: эндотелиального, субэндотелиального, мышечно-эластического, наружного соединительнотканного. Эпителиальный слой лежит на базальной мембране и представлен однослойным плоским эпителием. Субэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью. Эти два слоя являются аналогом внутренней оболочки кровеносного сосуда. Мышечно-эластический слой образован гладкими миоцитами и сетью эластических волокон, аналог средней оболочки сосудов. Наружный соединительнотканный слой образован рыхлой волокнистой неоформленной соединительной тканью и является аналогом наружной оболочки сосуда. Он связывает эндокард с миокардом и продолжается в его строму.

    Эндокард образует дубликатуры - клапаны сердца - плотные пластинки волокнистой соединительной ткани с небольшим содержанием клеток, покрытые эндотелием. Предсердная сторона клапана гладкая, тогда как желудочковая - неровная, имеет выросты, к которым прикрепляются сухожильные нити. Кровеносные сосуды в эндокарде находятся только в наружном соединительнотканном слое, поэтому его питание осуществляется в основном путем диффузии веществ из крови, находящейся как в полости сердца, так и в сосудах наружного слоя.

    Миокард является самой мощной оболочкой сердца, он образован сердечной мышечной тканью, элементами которой являются клетки кардиомиоциты. Совокупность кардиомиоцитов можно рассматривать как паренхиму миокарда. Строма представлена прослойками рыхлой волокнистой неоформленной соединительной тканью, которые в норме выражены слабо.

    Кардиомиоциты делятся на три вида:

    · основную массу миокарда составляют рабочие кардиомиоциты, они имеют прямоугольную форму и соединяются друг с другами с помощью специальных контактов - вставочных дисков. За счет этого они образуют функциональный синтиций;

    · проводящие или атипичные кардиомиоциты формируют проводящую систему сердца, которая обеспечивает ритмическое координированное сокращение его различных отделов. Эти клетки, являются генетически и структурно мышечными, в функциональном отношении напоминают нервную ткань, так как способны к формированию и быстрому проведению электрических импульсов.

    Различают три вида проводящих кардиомиоцитов:

    · Р-клетки (пейсмекерные клетки) образуют синоаурикулярный узел. Они отличаются от рабочих кардиомиоцитов тем, что способны к спонтанной деполяризации и образованию электрического импульса. Волна деполяризации передается чрез нексусы типичным кардиомиоцитам предсердия, которые сокращаются. Кроме того, возбуждение передается на промежуточные атипичные кардиомиоциты предсердно-желудочкового узла. Генерация импульсов Р-клетками происходит с частотой 60-80 в 1 мин;

    · промежуточные (переходные) кардиомиоциты предсердно-желудочкового узла передаю возбуждение на рабочие кардиомиоциты, а также на третий вид атипичных кардиомиоцитов - клетки-волокна Пуркинье. Переходные кардиомиоциты также способны самостоятельно генерировать электрические импульсы, однако их частота ниже, чем частота импульсов, генерируемых пейсмекерными клетками, и оставляет 30-40 в мин;

    · клетки-волокна - третий тип атипичных кардиомиоцитов, из которых построены пучок Гиса и волокна Пуркинье. Основная функция клеток-волоконпередача возбуждения от промежуточных атипичных кардиомиоцитов рабочим кардиомиоцитам желудочка. Кроме того, эти клетки способны самостоятельно генерировать электрические импульсы с частотой 20 и менее в 1 минуту;

    · секреторные кардиомиоциты располагаются в предсердиях, основной функцией этих клеток является синтез натрийуретического гормона. Он выделяется в кровь тогда, когда в предсердие поступает большое количество крови, то есть при угрозе повышения артериального давления. Выделившись в кровь, этот гормон действует на канальцы почек, препятствуя обратной реабсорбции натрия в кровь из первичной мочи. При этом в почках вместе с натрием из организма выделяется вода, что ведет к уменьшению объема циркулирующей крови и падению артериального давления.

    Эпикард - наружная оболочка сердца, он является висцеральным листком перикарда - сердечной сумки. Эпикард состоит из двух листков: внутреннего слоя, представленного рыхлой волокнистой неоформленной соединительной тканью, и наружного - однослойного плоского эпителия (мезотелий).

    Кровоснабжение сердца осуществляется за счет венечных артерий, берущих начало от дуги аорты. Венечные артерии имеют сильно развитый эластический каркас с выраженными наружной и внутренней эластическими мембранами. Венечные артерии сильно разветвляются до капилляров во всех оболочках, а также в сосочковых мышцах и сухожильных нитях клапанов. Сосуды содержатся и в основании клапанов сердца. Из капилляров кровь собирается в коронарные вены, которые изливают кровь или в правое предсердие, или в венозный синус. Еще более интенсивное кровоснабжение имеет проводящая система, где плотность капилляров на единицу площади выше, чем в миокарде.

    Особенностями лимфооттока сердца является то, что в эпикарде лимфососуды сопровождают кровеносные сосуды, тогда как в эндокарде и миокарде образуют собственные обильные сети. Лимфа от сердца оттекает в лимфоузлы в области дуги аорты и нижнего отдела трахеи.

    Сердце получает как симпатическую, так и парасимпатическую иннервацию.

    Стимуляция симпатического отдела вегетативной нервной системы вызывает увеличение силы, частоты сердечных сокращений и скорости проведения возбуждения по сердечной мышце, а также расширение венечных сосудов и увеличение кровоснабжения сердца. Стимуляция парасимпатической нервной системы вызывает эффекты, противоположные эффектам симпатической нервной системы: уменьшение частоты и силы сердечных сокращений, возбудимости миокарда, сужению венечных сосудов с уменьшением кровоснабжения сердца.

    3. Кровеносные сосуды являются органами слоистого типа. Состоят из трех оболочек: внутренней, средней (мышечной) и наружной (адвентициальной). Кровеносные сосуды делятся на:

    · артерии, несущие кровь от сердца;

    · вены, по которым движется кровь к сердцу;

    · сосуды микроциркуляторного русла.

    Строение кровеносных сосудов зависит от гемодинамических условий. Гемодинамические условия - это условия движения крови по сосудам. Они определяются следующими факторами: величиной артериального давления, скоростью кровотока, вязкостью крови, воздействием гравитационного поля Земли, местоположением сосуда в организме. Гемодинамические условия определяют такие морфологические признаки сосудов, как:

    · толщина стенки (в артериях она больше, а в капиллярах - меньше, что облегчает диффузию веществ);

    · степень развития мышечной оболочки и направления гладких миоцитов в ней;

    · соотношение в средней оболочке мышечного и эластического компонентов;

    · наличие или отсутствие внутренней и наружной эластических мембран;

    · глубина залегания сосудов;

    · наличие или отсутствие клапанов;

    · соотношение между толщиной стенки сосуда и диаметром его просвета;

    · наличие или отсутствие гладкой мышечной ткани во внутренней и наружной оболочках.

    По диметру артерии делятся на артерии малого, среднего и крупного калибра. По количественному соотношению в средней оболочке мышечного и эластического компонентов подразделяются на артерии эластического, мышечного и смешанного типов.

    Артерии эластического типа

    К таким сосудам относятся аорта и легочная артерии, они выполняют транспортную функцию и функцию поддержания давления в артериальной системе во время диастолы. В этом типе сосудов сильно развит эластический каркас, который дает возможность сосудам сильно растягиваться, сохраняя при этом целостность сосуда.

    Артерии эластического типа построены по общему принципу строения сосудов и состоят из внутренней, средней и наружной оболочек. Внутренняя оболочка достаточно толстая и образована тремя слоями: эндотелиальным, подэндотелиальным и слоем эластических волокон. В эндотелиальном слое клетки крупные, полигональные, они лежат на базальной мембране. Подэндотелиальный слой образован рыхлой волокнистой неоформленной соединительной тканью, в которой много коллагеновых и эластических волокон. Внутренняя эластическая мембрана отсутствует. Вместо нее на границе со средней оболочкой находится сплетение эластических волокон, состоящее из внутреннего циркулярного и наружного продольного слоев. Наружный слой переходит в сплетение эластических волокон средней оболочки.

    Средняя оболочка состоит в основном из эластических элементов. Они образуют у взрослого человека 50-70 окончатых мембран, которые лежат друг от друга на расстояния 6-18 мкм и имеют толщину 2,5 мкм каждая. Между мембранами находится рыхлая волокнистая неоформленная соединительная ткань с фибробластами, коллагеновыми, эластическими и ретикулярными волокнами, гладкими миоцитами. В наружных слоях средней оболочки лежат сосуды сосудов, питающие сосудистую стенку.

    Наружная адвентициальная оболочка относительно тонкая, состоит из рыхлой волокнистой неоформленной соединительной ткани, содержит толстые эластические волокна и пучки коллагеновых волокон, идущие продольно или косо, а также сосуды сосудов и нервы сосудов, образованные миелиновыми и безмиелиновыми нервными волокнами.

    Артерии смешанного (мышечно-эластического) типа

    Примером артерии смешанного типа является подмышечная и сонная артерии. Так как в этих артериях постепенно происходит снижение пульсовой волны, то наряду с эластическим компонентом они имеют хорошо развитый мышечный компонент для поддержания этой волны. Толщина стенки по сравнению с диаметром просвета у этих артерий значительной увеличивается.

    Внутренняя оболочка представлена эндотелиальным, подэндотелиальным слоями и внутренней эластической мембраной. В средней оболочке хорошо развиты как мышечный, так и эластический компоненты. Эластические элементы представлены отдельными волокнами, формирующими сеть, фенестрированными мембранами и лежащими между ними слоями гладких миоцитов, идущими спирально. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью, в которой встречаются пучки гладких миоцитов, и наружной эластической мембраной, лежащей сразу за средней оболочкой. Наружная эластическая мембрана выражена несколько слабее, чем внутренняя.

    Артерии мышечного типа

    К этим артериям относятся артерии малого и среднего калибра, лежащие вблизи органов и внутриорганно. В этих сосудах сила пульсовой волны существенно снижается, и возникает необходимость создания дополнительных условий по продвижению крови, поэтому в средней оболочке преобладает мышечный компонент. Диаметр этих артерий может уменьшаться за счет сокращения и увеличиваться за счет расслабления гладких миоцитов. Толщина стенки этих артерий существенно превышает диаметр просвета. Такие сосуды создают сопротивление движущей крови, поэтому их часто называют резистивными.

    Внутренняя оболочка имеет небольшую толщину и состоит из эндотелиального, подэндотелиального слоев и внутренней эластической мембраны. Их строение в целом такое же, как в артериях смешанного типа, причем внутренняя эластическая мембрана состоит из одного слоя эластических клеток. Средняя оболочка состоит из гладких миоцитов, расположенных по пологой спирали, и рыхлой сети эластических волокон, также лежащих спирально. Спиральное расположение миоцитов способствует большему уменьшению просвета сосуда. Эластические волокна сливаются с наружной и внутренней эластическими мембранами, образуя единый каркас. Наружная оболочка образована наружной эластической мембраной и слоем рыхлой волокнистой неоформленной соединительной тканью. В ней содержатся кровеносные сосуды сосудов, симпатические и парасимпатические нервные сплетения.

    4. Строение вен , так же как и артерий, зависит от гемодинамических условий. В венах эти условия зависят от того, расположены ли они в верхней или нижней части тела, так как строение вен этих двух зон различно. Различают вены мышечного и безмышечного типа. К венам безмышечного типа относятся вены плаценты, костей, мягкой мозговой оболочки, сетчатки глаза, ногтевого ложа, трабекул селезенки, центральные вены печени. Отсутствие в них мышечной оболочки объясняется тем, что кровь здесь движется под действием силы тяжести, и ее движение не регулируется мышечными элементами. Построены эти вены из внутренней оболочки с эндотелием и подэндотелиальным слоем и наружной оболочки из рыхлой волокнистой неоформленной соединительной ткани. Внутренняя и наружная эластические мембраны, так же как и средняя оболочка, отсутствуют.

    Вены мышечного типа подразделяются на:

    · вены со слабым развитием мышечных элементов, к ним относятся мелкие, средние и крупные вены верхней части тела. Вены малого и среднего калибра со слабым развитием мышечной оболочки часто расположены внутриорганно. Подэндотелиальный слой в венах малого и среднего калибра развит относительно слабо. В их мышечной оболочке содержится небольшое количество гладких миоцитов, которые могут формировать отдельные скопления, удаленные друг от друга. Участки вены между такими скоплениями способны резко расширяться, выполняя депонирующую функцию. Средняя оболочка представлена незначительным количеством мышечных элементов, наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью;

    · вены со средним развитием мышечных элементов, примером такого типа вен служит плечевая вена. Внутренняя оболочка состоит из эндотелиального и подэндотелиального слоев и формирует клапаны - дубликатуры с большим количеством эластических волокон и продольно расположенными гладкими миоцитами. Внутренняя эластическая мембрана отсутствует, ее заменяет сеть эластических волокон. Средняя оболочка образована спирально лежащими гладкими миоцитами и эластическими волокнами. Наружная оболочка в 2-3 раза толще, чем у артерии, и она состоит из продольно лежащих эластических волокон, отдельных гладких миоцитов и других компонентов рыхлой волокнистой неоформленной соединительной ткани;

    · вены с сильным развитием мышечных элементов, примером такого типа вен служат вены нижней части тела - нижняя полая вена, бедренная вена. Для этих вен характерно развитие мышечных элементов во всех трех оболочках.

    5. Микроциркуляторное русло включает в себя следующие компоненты: артериолы, прекапилляры, капилляры, посткапилляры, венулы, артериоло-венулярные анастомозы.

    Функции микроциркуляторного русла состоят в следующем:

    · трофическая и дыхательная функции, так как обменная поверхность капилляров и венул составляет 1000 м2, или 1,5 м2 на 100 г ткани;

    · депонирующая функция, так как в сосудах микроциркуляторного русла в состоянии покоя депонируется значительная часть крови, которая во время физической работы включается в кровоток;

    · дренажная функция, так как микроциркуляторное русло собирает кровь из приносящих артерий и распределяет ее по органу;

    · регуляция кровотока в органе, эту функцию выполняют артериолы благодаря наличию в них сфинктеров;

    · транспортная функция, то есть транспорт крови.

    В микроциркуляторном русле различают три звена: артериальное (артериолы прекапилляры), капиллярное и венозное (посткапилляры, собирательные и мышечные венулы).

    Артериолы имеют диаметр 50-100 мкм. В их строении сохраняются три оболочки, но они выражены слабее, чем в артериях. В области отхождения от артериолы капилляра находится гладкомышечный сфинктер, который регулирует кровоток. Этот участок называется прекапилляром.

    Капилляры - это самые мелкие сосуды, они различаются по размерам на:

    · узкий тип 4-7 мкм;

    · обычный или соматический тип 7-11 мкм;

    · синусоидный тип 20-30 мкм;

    · лакунарный тип 50-70 мкм.

    В их строении прослеживается слоистый принцип. Внутренний слой образован эндотелием. Эндотелиальный слой капилляра - аналог внутренней оболочки. Он лежит на базальной мембране, которая вначале расщепляется на два листка, а затем соединяется. В результате образуется полость, в которой лежат клетки перициты. На этих клетках на этих клетках заканчиваются вегетативные нервные окончания, под регулирующим действием которых клетки могут накапливать воду, увеличиваться в размере и закрывать просвет капилляра. При удалении из клеток воды они уменьшаются в размерах, и просвет капилляров открывается. Функции перицитов:

    · изменение просвета капилляров;

    · источник гладкомышечных клеток;

    · контроль пролиферации эндотелиальных клеток при регенерации капилляра;

    · синтез компонентов базальной мембраны;

    · фагоцитарная функция.

    Базальная мембрана с перицитами - аналог средней оболочки. Снаружи от нее находится тонкий слой основного вещества с адвентициальными клетками, играющими роль камбия для рыхлой волокнистой неоформленной соединительной ткани.

    Для капилляров характерна органная специфичность, в связи с чем выделяют три типа капилляров:

    · капилляры соматического типа или непрерывные, они находятся в коже, мышцах, головном мозге, спинном мозге. Для них характерен непрерывный эндотелий и непрерывная базальная мембрана;

    · капилляры фенестрированного или висцерального типа (локализация - внутренние органы и эндокринные железы). Для них характерно наличие в эндотелии сужений - фенестр и непрерывной базальной мембраны;

    · капилляры прерывистого или синусоидного типа (красный костный мозг, селезенка, печень). В эндотелии этих капилляров имеются истинные отверстия, есть они и в базальной мембране, которая может вообще отсутствовать. Иногда к капиллярам относят лакуны - крупные сосуды со строением стенки как в капилляре (пещеристые тела полового члена).

    Венулы делятся на посткапиллярные, собирательные и мышечные. Посткапиллярные венулы образуются в результате слияния нескольких капилляров, имеют такое же строение, как и капилляр, но больший диаметр (12-30 мкм) и большое количество перицитов. В собирательных венулах (диаметр 30-50 мкм), которые образуются при слиянии нескольких посткапиллярных венул, уже имеются две выраженные оболочки: внутренняя (эндотелиальный и подэндотелиальный слои) и наружная - рыхлая волокнистая неоформленная соединительная ткань. Гладкие миоциты появляются только в крупных венулах, достигающих диаметра 50 мкм. Эти венулы называются мышечными и имеют диаметр до 100 мкм. Гладкие миоциты в них, однако, не имеют строгой ориентации и формируют один слой.

    Артериоло-венулярные анастомозы или шунты - это вид сосудов микроциркуляторного русла, по которым кровь из артериол попадает в венулы, минуя капилляры. Это необходимо, например, в коже для терморегуляции. Все артериоло-венулярные анастомозы делятся на два типа:

    · истинные - простые и сложные;

    · атипичные анастомозы или полушунты.

    В простых анастомозах отсутствуют сократительные элементы, и кровоток в них регулируется за счет сфинктера, расположенного в артериолах в месте отхождения анастомоза. В сложных анастомозах в стенке есть элементы, регулирующие их просвет и интенсивность кровотока через анастомоз. Сложные анастомозы делятся на анастомозы гломусного типа и анастомозы типа замыкающих артерий. В анастомозах типа замыкающих артерий во внутренней оболочке имеются скопления расположенных продольно гладких миоцитов. Их сокращение приводит к выпячиванию стенки в виде подушки в просвет анастомоза и закрытию его. В анастомозах типа гломуса (клубочек) в стенке есть скопление эпителиоидных Е-клеток (имеют вид эпителия), способных насасывать воду, увеличиваться в размерах и закрывать просвет анастомоза. При отдаче воды клетки уменьшаются в размерах, и просвет открывается. В полушунтах в стенке отсутствуют сократительные элементы, ширина их просвета не регулируется. В них может забрасываться венозная кровь из венул, поэтому в полушунтах, в отличии от шунтов, течет смешанная кровь. Анастомозы выполняют функцию перераспределения крови, регуляции артериального давления.

    6. Лимфатическая система проводит лимфу от тканей в венозное русло. Она состоит из лимфокапилляров и лимфососудов. Лимфокапилляры начинаются слепо в тканях. Их стенка чаще состоит только из эндотелия. Базальная мембрана обычно отсутствует или слабо выражена. Для того, чтобы капилляр не спадался, имеются стропные или якорные филаменты, которые одним концом прикрепляются к эндотелиоцитам, а другим вплетаются в рыхлую волокнистую соединительную ткань. Диаметр лимфокапилляров равен 20-30 мкм. Они выполняют дренажную, функцию: всасывают из соединительной ткани тканевую жидкость.

    Лимфососуды делятся на интраорганные и экстраорганные, а также главные (грудной и правый лимфатические протоки). По диметру они делятся на лимфососуды малого, среднего и крупного калибра. В сосудах малого диаметра отсутствует мышечная оболочка, и стенка состоит из внутренней и наружной оболочек. Внутренняя оболочка состоит из эндотелиального и подэндотелиального слоев. Подэндотелиальный слой постепенно, без резких границ. Переходит в рыхлую волокнистую неоформленную соединительную ткань наружной оболочки. Сосуды среднего и крупного калибра имеют мышечную оболочку и по строению похожи на вены. В крупных лимфососудах есть эластические мембраны. Внутренняя оболочка формирует клапаны. По ходу лимфососудов находятся лимфоузлы, проходы через которые, лимфа очищается и обогащается лимфоцитами.

    Сосудистая оболочка глаза – это средняя оболочка глаза. С одной стороны сосудистая оболочка глаза граничит с , а с другой прилегает к склере глаза. Основная часть оболочки представлена кровеносными сосудами, которые имеют определенное расположение. Крупные сосуды лежат снаружи и только затем идут мелкие сосуды (капилляры) граничащие с сетчаткой. К сетчатке капилляры прилегают не плотно, их разделяет тоненькая мембрана (мембрана Бруха). Эта мембрана служит регулятором обменных процессов между сетчаткой и сосудистой оболочкой. Главной функцией сосудистой оболочки глазаявляется поддержание питания наружных слоев сетчатки. Кроме этого сосудистая оболочка выводит продукты обмена и сетчатки обратно в кровяное русло.

    Строение сосудистой оболочки глаза

    Сосудистая оболочка – является самой большой частью сосудистого тракта, который также включает в себя цилиарное тело и . По протяженности она ограничена с одной стороны цилиарным телом, а с другой стороны диском зрительного нерва. Питание сосудистой оболочки обеспечивают задние короткие цилиарные артерии, а вортикозные вены отвечают за отток крови. Из-за того, что сосудистая оболочка глаза не имеет нервных окончаний, ее заболевания протекают бессимптомно.

    В строении сосудистой оболочки выделяют пять слоев :

    — околососудистое пространство;

    — надсосудистый слой;

    — сосудистый слой;

    — сосудисто – капиллярный;

    — мембрана Бруха.

    Околососудистое пространство – это пространство, которое располагается между сосудистой оболочкой и поверхностью внутри склеры. Связь между двумя оболочками обеспечена эндотелиальными пластинами, но эта связь очень непрочная и поэтому сосудистая оболочка может отсаливаться в момент операции глаукомы.

    Надсосудистый слой – представлен эндотелиальными пластинами, эластичными волокнами, хроматофорами (клетки, содержащие темный пигмент).

    Сосудистый слой – похожа на мембрану, её толщина достигает 0,4 мм, интересно, что толщина слоя зависит от кровенаполнения. Состоит из двух сосудистых слоев: крупного и среднего.

    Сосудисто – капиллярный слой – это важнейший слой, который обеспечивает функционирование прилегающей сетчатой оболочки. Слой состоит из мелких вен и артерий, которые в свою очередь делятся на мелкие капилляры, что позволяет в достаточной мере обеспечит сетчатку кислородом.

    Мембрана Бруха – это тоненькая пластина (стекловидная пластина), которая крепко соединена с соудисто – капиллярным слоем, принимает участие в регулирование уровня кислорода поступающего в сетчатку, а также продуктов обмена обратно в кровь. Наружный слой сетчатки связан с мембраной Бруха, это связь обеспечивает пигментный эпителий.

    Диагностические методы исследования заболеваний сосудистой оболочки

    Флуоресцентная агиография данный метод позволяет оценить состояние сосудов, повреждения мембраны Бруха, а также появление новых сосудов.

    Симптомы при заболеваниях сосудистой оболочки

    При врожденных изменениях :

    — Коломба сосудистой оболочки – полное отсутствие сосудистой оболочки на определенных участках

    Приобретенные изменения ;

    — Дистрофия сосудистой оболочки;

    — Воспаление сосудистой оболочки – хориоидит, но чаще всего хориоретинит;

    — Разрыв;

    — Отслойка;

    — Опухоль.

    (Visited 473 times, 1 visits today)

    Сосудистая оболочка глаза (tunica vasculosa bulbi) располагается между наружной капсулой глаза и сетчаткой, поэтому ее называют средней оболочкой, сосудистым или увеальным трактом глаза. Она состоит из трех частей: радужки, ресничного тела и собственно сосудистой оболочки (хориоидея).

    Все сложные функции глаза осуществляются с участием сосудистого тракта. Вместе с тем сосудистый тракт глаза выполняет роль посредника между обменными процессами, происходящими во всем организме и в глазу. Разветаченная сеть широких тонкостенных сосудов с богатой иннервацией осуществляет передачу общих нейрогуморальных воздействий. Передний и задний отделы сосудистого тракта имеют разные источники кровоснабжения. Этим объясняется возможность их раздельного вовлечения в патологический процесс.

    14.1. Передний отдел сосудистой оболочки глаза - радужка и ресничное тело

    14.1.1. Строение и функции радужки

    Радужка (iris) - передняя часть сосудистого тракта. Она определяет цвет глаза, является световой и разделительной диафрагмой (рис. 14.1).

    В отличие от других частей сосудистого тракта радужка не соприкасается с наружной оболочкой глаза. Радужка отходит от склеры чуть позади лимба и располагается свободно во фронтальной плоскости в переднем отрезке глаза. Пространство между роговицей и радужкой называется передней камерой глаза. Глубина ее в центре 3-3,5 мм.

    Cзади от радужки, между нею и хрусталиком, располагается задняя камера глаза в виде узкой щели. Обе камеры заполнены внутриглазной жидкостью и сообщаются через зрачок.

    Радужка видна через роговицу. Диаметр радужки около 12 мм, ее вертикальный и горизонтальный размеры могут различаться на 0,5- 0,7 мм. Периферическую часть радужки, называемую корнем, можно увидеть только с помощью специального метода - гониоскопии. В центре радужка имеет круглое отверстие - зрачок (pupilla).

    Радужка состоит из двух листков. Передний листок радужки имеет мезодермальное происхождение. Его наружный пограничный слой покрыт эпителием, являющимся продолжением заднего эпителия роговицы. Основу этого листка составляет строма радужки, представленная кровеносными сосудами. При биомикроскопии на поверхности радужки можно видеть кружевной рисунок переплетения сосудов, образующих своеобразный рельеф, индивидуальный для каждого человека (рис. 14.2). Все сосуды имеют соединительнотканный покров. Возвышающиеся детали кружевного рисунка радужки называют трабекулами, а углубления между ними - лакунами (или криптами). Цвет радужки также индивидуален: от голубого, серого, желтовато-зеленого у блондинов до темнокоричневого и почти черного у брюнетов. Различия в цвете объясняются разным количеством многоотростчатых пигментных клеток меланобластов в строме радужки. У темнокожих людей количество этих клеток столь велико, что поверхность радужки похожа не на кружево, а на густотканый ковер. Такая радужка свойственна обитателям южных и крайних северных широт как фактор защиты от слепящего светового потока.

    Концентрично зрачку на поверхности радужки проходит зубчатая линия, образованная переплетением сосудов. Она делит радужку на зрачковый и цилиарный (ресничный) края. В цилиарном поясе выделяются возвышения в виде неровных круговых контракционных борозд, по которым складывается радужка при расширении зрачка. Радужка наиболее тонкая на крайней периферии у начала корня, поэтому именно здесь" возможен отрыв радужки при контузионной травме (рис. 14.3).

    Задний листок радужки имеет тодермальное происхождение, это пигментно-мышечное образование. Эмбриологически он является продолжением недифференцированной части сетчатки. Плотный пигментный слой защищает глаз от избыточного светового потока. У края зрачка пигментный листок выворачивается кпереди и образует пигментную кайму. Две мышцы разнонаправленного действия осуществляют сужение и расширение зрачка, обеспечивая дозированное поступление света в полость глаза. Сфинктер, суживающий зрачок, располагается по кругу у самого края зрачка. Дилататор находится между сфинктером и корнем радужки. Гладкомышечные клетки дилататора располагаются радиально в один слой.

    Богатая иннервация радужки осуществляется вегетативной нервной системой. Дилататор иннервируется симпатическим нервом, а сфинктер - за счет парасимпатических волокон ресничного узла - глазодвигательным нервом. Тройничный нерв обеспечивает чувствительную иннервацию радужки.

    Кровоснабжение радужки осуществляется из передних и двух задних Длинных цилиарных артерий, которые на периферии образуют большой артериальный круг. Артериальные ветви направляются в сторону зрачка, образуя дугообразные анастомозы. Так формируется извитая сеть сосудов цилиарного пояса радужки. От нее отходят радиальные веточки, образующие капиллярную сеть по зрачковому краю. Вены радужки собирают кровь из капиллярного русла и направляются от центра к корню радужки. Строение кровеносной сети таково, что даже при максимальном расширении зрачка сосуды не перегибаются под острым углом и не происходит нарушения кровообраще н ия.

    Исследования показали, что радужка может быть источником информации о состоянии внутренних органов, каждый из которых имеет свою зону представительства в радужке. По состоянию этих зон проводят скрининговую иридодиагностику патологии внутренних органов. Световая стимуляция этих зон лежит в основе иридотерапии.

    Функции радужки:

    • экранирование глаза от избыточного потока света;
    • рефлекторное дозирование количества света в зависимости от степени освещенности сетчатки (световая диафрагма);
    • разделительная диафрагма: радужка вместе с хрусталиком выполняют функцию иридохрусталиковой диафрагмы, разделяющей передний и задний отделы глаза, удерживающей стекловидное тело от смещения вперед;
    • сократительная функция радужки играет положительную роль в механизме оттока внутриглазной жидкости и аккомодации;
    • трофическая и терморегуляторная.

    СОСУДИСТАЯ ОБОЛОЧКА ГЛАЗА [tunica vasculosa bulbi (PNA), tunica media oculi (JNA), tunica vasculosa oculi (BNA); син.: сосудистый тракт глаза, uvea ] - средняя оболочка глазного яблока, богатая сосудами и располагающаяся между склерой и сетчаткой.

    В сосудистой оболочке глаза (глазного яблока, Т.) различают передний отдел, представленный радужкой (см.) и ресничным телом (см.), и задний - собственно сосудистую оболочку глаза, или хориоидею , занимающую большую часть С. о. г. Собственно С. о. г. форхмируется на 5-м мес. внутриутробного развития из мощного отростка мезодермы* проникающего в полость глазного бокала на месте перехода в него ножки глазного бокала.

    Анатомия

    Собственно С. о. г. распространяется от зубчатого края (ora serrata) до зрительного нерва (см.). Снаружи она граничит со склерой (см.), отделяясь от нее узкой щелью - перихориоидальным пространством (околососудистое пространство, Т.; spatium perichoroide-ale), к-рое окончательно образуется лишь ко второму полугодию жизни ребенка. Со склерой она плотно соединена только в области выхода зрительного нерва. Изнутри к собственно С. о. г. тесно прилежит сетчатка (см.). Толщина собственно С. о. г. колеблется в зависимости от кровенаполнения от 0,1 до 0,4 мм.

    Сосудистая система собственно С. о. г. представлена 8-12 задними короткими ресничными артериями (аа. ciliares breves), к-рые являются ветвями глазной артерии (a. ophthalmica) и проникают в собственно С. о. г. у заднего полюса глазного яблока, образуя густую сосудистую сеть. Венозная кровь из С. о. г. оттекает по вортикозным венам (vv. vorticosae), которые через косые каналы в склере 4-6 стволами выходят из глазного яблока.

    Иннервируют С. о. г. длинные и короткие ресничные нервы (nn. ciliares longi et breves).

    Гистология

    В собственно С. о. г. различают 5 слоев (рис.): 1) супра-хориоидальную пластинку - наружный слой, примыкающий к склере, состоящий из тонких соединительнотканных пластинок, расположенных в 5-7 рядов и покрытых многоотростчатыми пигментными клетками (см.); 2) слой крупных сосудов (слой Галлера), состоящий из довольно крупных, преимущественно венозных сосудов, промежутки между к-рыми заполнены рыхлой соединительной тканью и пигментными клетками; в этом слое берут начало вортикозные вены; 3) слой средних сосудов (слой Заттлера), состоящий преимущественно из артериальных сосудов и содержащий меньше пигментных клеток, чем слой Галлера; 4) хориокапиллярный слой (хороидально-капиллярная пластинка, lamina choroidocapillaris), имеющий своеобразное строение (капилляры-лакуны расположены в одной плоскости и отличаются необычной шириной просвета и узостью межкапиллярных промежутков), благодаря чему создается почти сплошной кровеносный коллектор, отделенный от сетчатки только стекловидной пластинкой; особенно густа сеть сосудов в хориокапиллярном слое у заднего полюса глазного яблока в области центральной ямки сетчатки, обеспечивающей функции центрального и цветового зрения; 5) стекловидную пластинку, или мембрану Бруха (базальный комплекс, или базальная пластинка, Т.), толщиной 2-3 мкм, отделяющую сосудистую оболочку от пигментного эпителия сетчатки.

    Периваскулярные пространства собственно С. о. г. заняты стромой, состоящей из рыхлой соединительной ткани (см.). Кроме фиброцитов и блуждающих гистиоцитов собственно С. о. г. содержит пигментные клетки, тела и многочисленные отростки к-рых заполнены мелкими зернами коричневого пигмента. Они придают собственно С. о. г. темную окраску.

    Физиология

    Собственно С. о. г. обеспечивает питание и нормальное функционирование сетчатки: хорио-капиллярный слой снабжает кровью наружные слои сетчатки, в т. ч. слой палочек и колбочек, где происходит восстановление непрерывно распадающегося родопсина (зрительного пурпура), необходимого для зрения (см.). Кроме того, собственно С. о. г., благодаря наличию в ней хемотен-зорецепторов, участвует в регуляции офтальмотонуса.

    Методы исследования

    Методы исследования включают офтальмоскопию (см.), офтальмохро-москопию, диафаноскопию (см.), флюоресцентную ангиографию (см.), ультразвуковую биометрию (см. Ультразвуковая диагностика). Для диагностики новообразований собственно С. о. г. применяют радио-изотопные исследования с радиоактивным фосфором 32Р, йодом 1311, криптоном 85Кг.

    С целью уточнения диагноза широко используют иммунологические методы исследования (см. Иммунодиагностика). К ним относятся серологические исследования: реакции агглютинации (см.), преципитации (см.), микропреципитации по Уанье (метод нефелометрии), реакция связывания комплемента (см.); количественное определение иммуноглобулинов в биол. жидкостях (сыворотке крови, слезной жидкости, водянистой влаге передней камеры глаза и др.) методом Манчини. Для исследования клеточного иммунитета применяют реакции бластотрансформации лимфоцитов (см.), торможения миграции лейкоцитов, лейкоцитолиза. Для уточнения этиологии воспалительных заболеваний (хориоидитов, увеитов) проводят также очаговые пробы с использованием специфических аллергенов (туберкулина, токсоплазмина, очищенных бактериальных и вирусных антигенов, тканевых антигенов С. о. г.). Аллерген наносят на кожу или вводят внутрикожно, подкожно либо путем электрофореза, после чего наблюдают за течением хориоидита (или увеита). Пробу считают положительной при возникновении обострения хориоидита (увеита) или при уменьшении воспаления.

    Патология

    Различают пороки развития, повреждения, заболевания, опухоли С. о. г.

    Пороки развития. Наиболее частой аномалией развития собственно С. о. г. является колобо-ма (см.). Иногда встречается недоразвитие С. о. г.-- хориодеремия, пигментные пятна С. о. г., к-рые не требуют специального лечения.

    Повреждения наблюдаются при проникающих ранениях, контузиях, оперативных вмешательствах (см. Глаз, повреждения).

    Отслойка собственно С. о. г. может возникать при повреждениях глаза, а также после полостных операций на глазном яблоке (антиглау-коматозных, экстракции катаракты и др.). При этом в перихориоидаль-ном пространстве скапливается транссудат, отслаивающий собственно С. о. г. от склеры. Отслойка собственно С. о. г. может быть также результатом нарушения крово

    обращения в ней при резком снижении внутриглазного давления.

    Клин, признаками отслойки собственно С.о. г. являются снижение зрительных функций, мелкая и неравномерная передняя камера глазного яблока, понижение внутриглазного давления. При офтальмоскопии виден серого цвета «пузырь» отслоенной собственно С. о. г. Диагноз ставят на основании клин, картины, данных периметрии, ультразвукового исследования (см. Ультразвуковая диагностика, в офтальмологии) и диафаноскопии (см.). Лечение консервативное: подконъюнктивальные инъекции кофеина, дексазона, внутрь дигоксин, верошпирон, аско-рутин. При отсутствии эффекта показано оперативное лечение: задняя трепанация склеры (см.) или склеротомия (см. Склера) для выведения избыточной перихориоидальной жидкости. Прогноз при своевременном лечении благоприятный.

    Заболевания. Воспалительные процессы могут развиваться во всех отделах сосудистой оболочки (см. Увеит) или только в ее заднем отделе - задний увеит, или хо-риоидит (см.).

    Особенности строения и функции С. о. г. определяют своеобразие воспалительных процессов. Обилие сосудов, анастомозов между ними, широкий просвет капилляров вызывают замедление кровотока и создают благоприятные условия для оседания в С. о. г. бактерий, токсинов, вирусов, простейших и других патол. агентов. Большое количество пигментных клеток, гистиоцитов, наличие протеинов, мукополисаха-ридов (гликозаминогликанов) обусловливает высокую антигенную органоспецифичность собственно С. о. г. и создает предпосылки для развития аллергии при инф. поражениях. Иммунный конфликт может проявляться аллергическими реакциями замедленного типа (чаще) и немедленного типа.

    Опухоли. Из доброкачественных опухолей встречаются неврино-мы (см.), ангиомы, иевусы (см. Неву с, глаза). Невриномы сосудистой оболочки обычно развиваются на фоне нейрофиброматоза (см.). Ангиомы С. о. г. наблюдаются редко, их расценивают как порок развития сосудистой системы глаза. Как правило, они сочетаются с подобными аномалиями кожи лица и слизистых оболочек.

    Злокачественные опухоли собственно С. о. г. подразделяют на первичные и вторичные. Первичные опухоли развиваются из элементов собственно С. о. г., вторичные - при метастазировании из первичного очага, расположенного в молочной железе, легких, жел.-киш. тракте.

    Наиболее распространенной злокачественной опухолью собственно С. о. г. является меланома (см.). Для лечения злокачественных опухолей применяют лазеркоагуляцию (см. Лазер), резекцию опухоли, криоразрушающие операции (см. Криохирургия), по показаниям - лучевую терапию, химиотерапию, иногда прибегают к удалению глазного яблока (см. Энуклеация глаза).

    Иссечение периферических отделов собственно С. о. г. в сочетании с криовоздействием производят при удалении опухолей. Рассечение собственно С. о. г. осуществляют для введения в полость глаза различных инструментов при удалении инородных тел (см.), операциях на стекловидном теле (см.), сетчатке (см.).

    Библиография: Архангельский В.Н. Морфологические основы офтальмоскопической диагностики, с. 132, М., 1960; Б у-н и н А. Я. Гемодинамика глаза и методы ее исследования, с. 34, М., 1971; В о-довозов А. М. Световые рефлексы глазного дна, Атлас, с. 160, М., 1980; Зайцева Н. С. и др. Иммунологические и биохимические факторы в патогенезе и обосновании терапии увеитов, Вестн. офтальм., № 4, с. 31, 1980; Зальцманн М. Анатомия и гистология человеческого глаза в нормальном состоянии, его развитие и увядание, пер. с нем., с. 53, М., 1913; Ковалевский Е. И. Детская офтальмология, с. 189, М., 1970; он же, Глазные болезни, с. 275, М., 1980; Краснов М. Л. Элементы анатомии в клинической практике офтальмолога, М., 1952; Многотомное руководство по глазным болезням, под ред. В. Н. Архангельского, т. 1, кн. 1, с. 159, М., 1962; Н е-стеров А. П., Бунин А. Я. и Кацнельсон Л. А. Внутриглазное давление, Физиология и патология, с. 141, 244, М., 1974; Пеньков М. А., Шпак Н. И. и АврущенкоН. М. Эндогенные увеиты, с. 47 и др., Киев, 1979; Самойлов А. Я., Юзефова Ф. И. и Азарова Н. С. Туберкулезные заболевания глаз, Л., 1963; Fort-schritte der Augenheilkunde, hrsg. v. E. B. Streiff, Bd 5, S. 183, Basel - N. Y., 1956; Frangois J., Rabaey M. et Vandermeerssche G. L’ult-rastructure des tissus occulaires au microscope electronique, Ophthalmologica (Basel), t. 129, p. 36, 1955; System of ophthalmology, ed. by S. Duke-Elder, v. 9, L., 1966; Woods A. С. Endogenous uveitis, Baltimore, 1956, bibliogr.

    О. Б. Ченцова.

    Сосудистая оболочка глаза, также называемая хориоидеей представляет собой среднюю оболочку органа зрения, лежащую между и . Основная часть хориоидеи - это хорошо развитая и строго упорядоченная сеть кровеносных сосудов. При этом крупные кровеносные сосуды лежат снаружи оболочки, внутри же, ближе к границе с сетчаткой, локализован слой капилляров.

    Главная задача сосудистой оболочки - обеспечение бесперебойного питанием четырем наружным слоям сетчатки, включая слой фоторецепторов, и выведение в кровоток продуктов обмена. Слой капилляров от сетчатки отграничивает тонкая мембрана Бруха, чья функция - регулирование процессов обмена между сетчатой и сосудистой оболочками. Околосоудистое пространство, вследствие своей рыхлой структуры, служит проводником задних длинных цилиарных артерий, занятых в кровоснабжении переднего отдела органа зрения.

    Строение сосудистой оболочки

    Сосудистой оболочке принадлежит самая обширная часть в сосудистом тракте глазного яблока, который также включает цилиарное тело и . Пролегает она от цилиарного тела, ограниченного зубчатой линией, до пределов диска .

    Кровотоком хориоидеа обеспечивается посредством задних коротких цилиарных артерий. А оттекает кровь по вортикозным венам. Ограниченное количество вен (одна на каждый квадрант, глазного яблока и массивный кровоток способствуют медленному току крови, что повышает вероятность развития процессов инфекционного воспаления вследствие оседания болезнетворных микроорганизмов. В сосудистой оболочке нет чувствительных нервных окончаний, поэтому ее заболевания протекают безболезненно.

    В специальных клетках хориоидеи, хроматофорах находится богатый запас темного пигмента. Этот пигмент весьма важен для зрения, ведь световые лучи, проходящие сквозь открытые участки радужной оболочки или склеры, могут мешать хорошему зрению вследствие разлитого освещения сетчатки либо боковых засветов. Кроме того, количество пигмента, содержащегося в сосудистой оболочке, определяет степень окраски .

    Большей частью, сосудистая оболочка, в соответствии со своим названием, состоит из сосудов крови, включая в себя еще несколько слоев: околососудистое пространство, а также надсосудистый и сосудистый слои, сосудисто-капиллярный слой и базальный.

    • Перихороидальное околососудистое пространство представляет собой узкую щель отграничивающую внутреннюю поверхность склеры от сосудистой пластинки, которая пронизана нежными пластинками эндотелия, связывающими стенки. Однако, связь хориоидеи и склеры в данном пространстве довольно слаба и сосудистая оболочка легко от склеры отслаивается, к примеру, при скачках внутриглазного давления в ходе хирургического лечения . К переднему отрезку глаза от заднего, в перихороидальном пространстве идут два кровеносных сосуда в сопровождении нервных стволов – это длинные задние цилиарные артерии.
    • Надсосудистая пластинка включает эндотелиальные пластинки, эластичные волокна и хроматофоры - клетки, содержащие темный пигмент. Количество их в хориоидальных слоях по направлению кнутри заметно уменьшается, и сходит на нет у хориокапиллярного слоя. Наличие хроматофоров зачастую приводит к развитию невусов хориоидеи, нередко возникают и меланомы - наиболее агрессивные из злокачественных новообразований.
    • Сосудистая пластинка является мембраной коричневого цвета, толщина которой достигает 0,4 мм, причем величина ее слоя связана с условиями кровенаполнения. Сосудистая пластинка включает два слоя: крупные сосуды, с артериями, лежащие снаружи и сосуды среднего калибра, с преобладающими венами.
    • Хориокапиллярный слой, называемый сосудисто-капиллярной пластинкой, считается самым значимым слоем хориоидеи. Он обеспечивает функции подлежащей сетчатой оболочки и формируется из мелких магистралей артерий и вен, распадающихся затем на множество капилляров, что дает возможность поступлению в сетчатку большего количества кислорода. Особенно выраженная сеть капилляров присутствует в области. Весьма тесная связь хориоидеи и сетчатки является причиной того, что процессы воспаления, как правило, поражают практически одновременно и сетчатку, и хориоидею.
    • Мембрана Бруха –тонкая, включающая два слоя пластинка, очень плотно соединенная с хориокапиллярным слоем. Она занята в регулировании поступления в сетчатку кислорода и вывода продуктов обмена в кровь. Мембрана Бруха связана и с наружным слоем сетчатой оболочки – пигментным эпителием. В случае предрасположенности, с возрастом, иногда возникают нарушения функций комплекса структур, включающих хориокапиллярный слой, мембрану Брухиа, пигментный эпителий. Это ведет к развитию возрастной макулярной дегенерации.

    Видео о строении сосудистой оболочки глаза

    Диагностика заболеваний сосудистой оболочки

    Методами диагностики патологий сосудистой оболочки, являются:

    • исследование.
    • Ультразвуковая диагностика (УЗИ).
    • Флуоресцентная , с оценкой состояния сосудов, выявлением повреждений мембраны Бруха и новообразованных сосудов.

    Симптоматика болезней сосудистой оболочки

    • Снижение остроты зрения.
    • Искажение зрения.
    • Нарушение сумеречного зрения ().
    • Мушки перед глазами.
    • Затуманивание зрения.
    • Молнии перед глазами.

    Болезни сосудистой оболочки глаза

    • Колобома сосудистой оболочки или полное отсутствие определенного участка хориоидеи.
    • Дистрофии сосудистой оболочки.
    • Хориоидит, хориоретинит.
    • Отслойка сосудистой оболочки, происходящая при скачках внутриглазного давления в процессе офтальмологических операций.
    • Разрывы в сосудистой оболочке и кровоизлияния – чаще по причине травм органа зрения.
    • Невус хориоидеи.
    • Новообразования (опухоли) сосудистой оболочки.