Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Современные оптические приборы. Оптические приборы

    Современные оптические приборы. Оптические приборы
    ОПТИЧЕСКИЕ ПРИБОРЫ, устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение – светосила; способность различать соседние детали изображения – разрешающая сила; соотношение размеров предмета и его изображения – увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения – угол, под которым из центра прибора видны крайние точки предмета. Разрешающая сила . Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы , зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины. Увеличение . Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H ў , то увеличение m определяется по формуле m = H ў /H . Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М . Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tg b /tg a , где a – угол, под которым наблюдатель видит предмет невооруженным глазом, а b – угол, под которым глаз наблюдателя видит предмет через прибор.

    При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик – светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры.

    Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

    Микроскопы. Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1): M = tg b /tg a = (H /f )/(H /v ) = v /f , где f – фокусное расстояние линзы, v – расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации . M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат. См. также МИКРОСКОП. ; ЭЛЕКТРОННЫЙ МИКРОСКОП. Телескопы. Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b , исходящий не из тех точек предмета, откуда пришли лучи a и c , падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b . Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа: M = –tg b /tg a = –F /f ў (или F /f ).

    Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

    Бинокли. Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего – Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45 ° ), ориентированные навстречу прямоугольными гранями. Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6–9 ° ) , биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, – его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8 ґ 40 или 7 ґ 50. Оптические прицелы. В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия. Дальномеры. Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм. В схеме монокулярного дальномера, показанной на рис. 3, эту функцию исполняет призма P 3 ; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90 ° , независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта. Осветительные и проекционные приборы . Прожекторы. В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера. Диаскоп. В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же. Спектральные приборы. Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра. Спектрометр. В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел. Спектрограф. Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210–800 нм), стекла (360–2500 нм) или каменной соли (2500–16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области. См. также АСТРОНОМИЯ И АСТРОФИЗИКА; ОПТИКА. ЛИТЕРАТУРА Борн М., Вольф Э. Основы оптики . М., 1970
    Ефремов А.А. и др. Сборка оптических приборов . М., 1978
    Справочник конструктора оптико-механических приборов . Л., 1980
    Кулагин С.В. Основы конструирования оптических приборов . Л., 1982
    Погарев Г.В. Юстировка оптических приборов . Л., 1982

    Как правило, все подготовительные разведывательные действия террористического характера выполняются с применением разнообразных систем наблюдения (оптико-механических, телевизионных, ночного видения и прочих).

    Одним из немногих демаскирующих признаков применения террористами и преступниками оптических приборов наблюдения, прицеливания и видения является их оптический контраст.

    Активное применение обнаружителей оптических устройств дает возможность упредить действия террористов и преступников, которые могут привести к серьезным человеческим и материальным потерям и, кроме того, позволяет выиграть время для обеспечения реальной безопасности. Дальность обнаружения современных обнаружителей оптических устройств варьируется от 100 до 2500м.

    Обнаружение оптических прицельно-наблюдательных приспособлений обеспечивается за счет эффекта световозвращения или «обратного блика». Этот эффект возникает, когда оптическое устройство освещается узконаправленным пучком света по оси оптического устройства или близко к ней и показан на рис. 3.17.

    Рис. 3.17. Принцип действия обнаружителя оптических устройств

    Яркость отраженного (световозвращающего) луча, как правило, на несколько порядков выше яркости диффузных вторичных источников, то есть непосредственно объектов, техники и местных предметов. Эффект будет возникать независимо от конструкции прицела и от того, что находится за ним. Свойства приборов позволяют обнаруживать оптическое и кино-фотонаблюдение, даже если оно ведется из-за тонированных или зеркальных стекол.

    В зависимости от решаемой тактической задачи системы обнаружения оптических устройств делятся на стационарные и мобильные, портативные.

    При установке систем на стационарных объектах предусмотрена организация работы как непосредственно с участием оператора, так и в автоматизированном режиме, с возможностью организации управления одновременно несколькими комплексами, с накоплением и передачей получаемой информации на удаленные пункты контроля.

    Учитывая отсутствие у стационарных комплексов внешних отличий от стандартных охранно-телевизионных комплексов, исключается их ранняя идентификация со стороны террористов, ведущих наблюдение за объектом.

    Мобильные и ручные приборы могут быть использованы в качестве эффективных средств предупреждения нападения, как на стационарные объекты, так и при организации надежной личной охраны руководителей и безопасности особо важных городских и загородных мероприятий.

    В большинстве случаев обнаружители оптических устройств оснащаются инфракрасными лазерными излучателями и устройством наблюдения блика. Лазерные излучатели могут быть непрерывного и импульсного действия.

    В приборах первого типа мощный лазер непрерывного действия, совмещенный с прибором ночного видения. Импульсные устройства совмещаются с инфракрасной видеокамерой и сложной логикой обработки сигнала, уменьшающей вероятность ложного обнаружения. Инфракрасная лазерная подсветка используется, в основном, с целью предотвращения обнаружения снайпером средств обнаружения оптических устройств.

    Для эффективного поиска оптических устройств, работающих в видимом диапазоне, длина волны лазера должна быть максимально приближена к длине волны оптического диапазона, так как коэффициенты преломления волн различной длины в оптических приборах также различны. Поэтому используется лазер с длиной волны 700..900 нм. Такое концентрированное излучение очень слабо воспринимается глазом.

    Примером обнаружителей оптических устройств является устройство «СПИН-2» (рис. 3.18), предназначенное для дистанционного обнаружения оптических и оптико-электронных средств, прицелов, длиннофокусных объективов в условиях как интенсивного дневного, так и слабого ночного освещения на расстоянии до 1000 м. Прибор позволяет регистрировать оптико-электронные средства наблюдения в виде яркого блика на фоне подстилающей поверхности. Угол пеленга средств наблюдения соответствует углу поля зрения самих средств наблюдения. Визуализация наблюдаемых объектов осуществляется через встроенный электронный псевдобинокуляр.


    Рис. 3.18. Средство обнаружения оптических устройств «СПИН-2»

    Существуют портативные устройства, предназначенные для поиска скрытно установленных видео-фото-камер и других скрытых оптических устройств. Работают такие устройства по такому же принципу, однако имеются конструктивные отличия. Они обнаруживают оптику любого типа, даже если фотоаппарат или камера выключены, работают на расстояниях 5…20 м, что вполне достаточно, для того, чтобы обнаружить скрытно установленное в помещении оптическое устройство. В них используется видимый оптический диапазон, делая невозможным применение различного рода фильтров, т.к. фильтр сделает невозможным наблюдение скрытно установленным устройством.

    Примером данного класса устройств является обнаружитель скрытых видеокамер «ВОРОН» (рис. 3.19), предназначен для быстрого обнаружения и определения местоположения скрытых (камуфлированных в различные предметы интерьера и одежды) микровидеокамер, в том числе с объективами типа «Pin-hole». Обнаружитель «ВОРОН» использует светодиодную подсветку целей, что гарантирует безопасность эксплуатации и отсутствие вредного воздействия на человека (в отличие от лазерной подсветки). Дальность обнаружения объективов скрытых видеокамер типа Pin-Hole (ø 1 мм) составляет от 1 до 20 метров.

    Рис. 3.19 Обнаружитель скрытых видеокамер «ВОРОН»

    Cтраница 1


    Оптические устройства для хранения и обработки информации могут быть созданы на основе разных материалов (сегнетоэлек-трики, полупроводники, жидкие кристаллы, металлы, ферриты) и различных физических эффектов.  

    Оптическое устройство, позволяющее получить такое изображение, состоит из линзы 15 (рис. 86), зеркала 14 и матового стекла 16, на которое направлен поток лучей источника света. При измерении разрежения или давления прибор устанавливают по уровню и приводят в нулевое положение, для чего указатель 8 (рис. 85) устанавливают на ноль по шкале 9, а нулевое деление шкалы 13 на головке винта совмещают со штрихом 10, нанесенным на корпусе прибора. Затем заполняют сосуды дистиллированной водой так, чтобы вершина конуса 7 находилась в плоскости уровня воды. Для удобства окончательную установку нулевого уровня выполняют не доливанием или отбором воды, а перемещением сосуда 2 с помощью гайки 6; при этом штуцеры / / и 12 должны быть открыты.  

    Оптическое устройство - спектрограф для разложения пучка света источника на составляющие его длины волн.  


    Оптическое устройство 16, 20 расположено внутри станины под измерительной линейкой машины.  

    Оптическое устройство представляет собой набор относительно простых и легко заменяемых элементов: линз Л, фильтров Ф и диафрагм. Сейсмограмма фотографируется на прозрачную фотопленку (транспорт Тр) при большом уменьшении.  

    Оптическое устройство состоит из кронштейна, укрепленного на плите основания, и микроскопа МБС-1. Микроскоп может перемещаться в вертикальной и горизонтальной плоскостях. Положение микроскопа может быть зафиксировано стопорным винтом. В правом окуляре микроскопа имеются визирные линии. Положение линзы с линиями строго ориентировано относительно направления движений резца и зафиксировано специальной гайкой, надетой на правый окуляр микроскопа.  


    Оптические устройства, выделяющие узкие области спектра, служат для монохроматизации излучения. Они работают на принципе многолучевой интерференции. УИФ представляет собой две плоскопараллельные пластины диаметром 40 - 50 мм, между которыми расположен слой диэлектрика, имеющий толщину, сравнимую с длиной волны. Внутренние поверхности пластин имеют высокоотражающие покрытия из металла или диэлектрика. На рис. 3.7. 10, а, б показано устройство и конструкция простейшего УИФ. Принцип получения высокоотражающих диэлектрических зеркал описан выше.  

    Оптические устройства и приборы, основанные на совместном использовании явлений интерференции и поляризации, широко применяются в технике физического эксперимента для монохроматизации излучения и для различных исследований и измерений. Использование поляризационных свойств света позволяет значительно повысить точность интерференционных измерений, а также создать перестраиваемые по длинам волн фильтры, выделяющие весьма узкие спектральные диапазоны и обладающие большой светосилой. Приборы и установки, построенные на базе поляризационных явлений, широко используются для диагностики кристаллов и для количественного исследования напряжений в деталях и конструкциях.  

    Оптическое устройство для устаноьки поперечного и поворотного столов на расточном станке: 1 -поперечный стол.  

    Сфера Пуанкаре.  

    Оптическое устройство, которое преобразует проходящий через него естественный свет в поляризованный, называется поляризатором. Превратить естественный свет в поляризованный можно, используя двойное лучепреломление в кристаллах. Поскольку два луча, выходящие из кристалла, ортогонально линейно поляризованы, то для получения луча нужной поляризации достаточно перекрыть один из них. Однако этот прием наталкивается на большие трудности, так как линейное расхождение лучей в кристалле мало. Поэтому необходимо использовать очень узкие световые потоки, что снижает их яркость.  

    Оптическое устройство должно быть выполнено подвижным в продольном или поперечном плане по отношению к оси фары для того, чтобы в режиме дальнего света световые лучи от источника не проходили через оптическое устройство. Управление оптическим устройством может осуществляться механическим, пневматическим или электрическим способами.  

    Оптические устройства значительно повышают точность установки подвижных органов, способствуют уменьшению утомляемости зрения и сокращению вспомогательного времени.