Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Строение и работа зрительного анализатора человека. Что такое зрительный анализатор и схема его построения Зрительный анализатор глаза

    Строение и работа зрительного анализатора человека. Что такое зрительный анализатор и схема его построения Зрительный анализатор глаза

    1. Что такое анализатор? Как он устроен?

    Анализатор – система, обеспечивающая восприятие, доставку в мозг и анализ в нём какого – либо вида информации (зрительной, слуховой, обонятельной и другие).

    Все анализаторы состоят из 3 основных частей:

    Рецептор (периферический отдел): рецепторы воспринимают раздражение и преобразуют энергию раздражителя (света, звука, температуры) в нервные импульсы.

    Проводящие нервные пути (проводниковый отдел)

    Центральный отдел: нервные центры в определенных областях коры больших полушарий головного мозга, в которой осуществляется превращение нервного импульса в специфическое ощущение.

    2. Чем представлены периферический, проводниковый и центральный отделы зрительного анализатора?

    Периферический отдел: палочки и колбочки сетчатки. Проводниковый отдел: зрительный нерв, верхние бугры четверохолмия (средний мозг) и зрительные ядра таламуса. Центральный отдел: зрительная зона коры больших полушарий (затылочная область).

    3. Перечислите структуры вспомогательного аппарата глаза и их функции.

    К вспомогательному аппарату глаза относят брови и ресницы, веки, слёзную железу, слёзные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды. Брови отводят стекающий со лба пот, а также брови и ресницы защищают глаза от пыли. Слёзная железа вырабатывает слезную жидкость, которая, при моргании, смачивает, дезинфицирует и очищает глаз. Избыток жидкости и собирается в углу глаза и отводится через слёзные канальцы в полость носа. Веки защищают глаз от световых лучей, пыли; моргание (периодическое смыкание и размыкание век) обеспечивает равномерное распределение слезной жидкости по поверхности глазного яблока. Благодаря глазодвигательным мышцам мы можем следить за движущимися предметами не поворачивая головы. Сосуды обеспечивают питание глаза и его вспомогательных структур.

    4. Как устроено глазное яблоко?

    Глазное яблоко имеет форму шара и располагается в специальном углублении черепа – глазнице. Стенка глазного яблока состоит из трех оболочек: наружной фиброзной, средней сосудистой и сетчатки. Полость глазного яблока заполнена бесцветным и прозрачным стекловидным телом. Фиброзная оболочка – наружная белковая оболочка глаза, полностью покрывающая его и служащая для защиты остальных частей глаза. В ней выделяют заднюю непрозрачную часть – белочную оболочку (склера) и переднюю прозрачную – роговицу. Роговица выпуклая вперед, она не имеет кровеносных сосудов и в ней происходит наибольшее преломление световых лучей. Сосудистая оболочка располагается под фиброзной, в ней выделяют собственно сосудистую оболочку (лежит под склерой, пронизана множеством сосудиков и обеспечивает питание глаза), ресничное тело, и радужку. Клетки радужки содержат меланин, от которого и зависит цвет глаз. В центре радужки находится небольшое отверстие – зрачок, способный расширяться или сужаться в зависимости от количества света, попадающего на глаз или от влияния симпатической и парасимпатической нервной системы. Непосредственно за зрачком лежит хрусталик (прозрачное двояковыпуклое образование диаметром до 1 см). Внутренняя оболочка глаза – сетчатка, состоящая из рецепторов (палочек и колбочек) и нервных клеток, соединяющих все рецепторы в единую сеть и передающих информацию в зрительный нерв. Большинство колбочек размещается в сетчатке напротив зрачка, в жёлтом пятне (место наилучшего видения). Рядом с жёлтым пятном, в месте выхода зрительного нерва, находится участок сетчатки лишенный рецепторов - слепое пятно.

    5. Какое значение имеет способность хрусталика менять свою кривизну?

    Благодаря изменениям кривизны хрусталика изображение в глазу четко фокусируется на поверхности сетчатки в одной точке, что можно сравнить с наведением резкости на фотоаппарате.

    6. Какую функцию выполняет зрачок?

    Зрачок регулирует количество света, поступающего в глаз. Расширение зрачка при малой освещенности и его сужение при ярком освещении получило название аккомодационной способности глаза.

    7. Где располагаются палочки и колбочки, в чём их сходство и различия?

    Палочки и колбочки располагаются в сетчатке. И палочки, и колбочки являются фоторецепторами, лежат единым слоем и содержат специфические белки, молекулы которых возбуждаются под действием света. Они различаются по форме и степени чувствительности к свету и цвету. Колбочки – фоторецепторы, воспринимающие очертания и детали объектов и обеспечивающие цветовое зрение. По трехкомпонентной теории света существует три типа колбочек, каждый из которых лучше воспринимает определенный цвет: красно-оранжевый, желто-зеленый, сине-фиолетовый. Палочки – фоторецепторы, обеспечивающие черно-белое зрение и обладающие высокой чувствительностью к свету. Колбочки менее чувствительны к свету, чем палочки. Поэтому в сумерках зрение обеспечивается только палочками, из-за чего в этих условиях человек плохо различает цвета.

    8. В какой части глаза находятся рецепторы, воспринимающие свет и преобразующие его в нервный импульс?

    Фоторецепторы (палочки и колбочки) находятся в сетчатке.

    9. Где расположено слепое пятно?

    Рядом с жёлтым пятном, в месте выхода зрительного нерва, находится участок сетчатки лишенный рецепторов - слепое пятно.

    10. В какой части сетчатки формируется наиболее чёткое цветное изображение? С чем это связано?

    Наиболее четкое изображение предметов формируется в желтом пятне, области в центральной части сетчатки, в которой колбочки расположены с максимальной плотностью, а палочки отсутствуют. На желтое пятно проецируются световые лучи от той точки, на которую направлен наш взгляд.

    11. Опишите работу зрительного анализатора от поступления света на орган зрения до формирования зрительного образа в головном мозге.

    Свет поступает на глазное яблоко, глазодвигательные мышцы обеспечивают оптимальное его положение. Свет проходит через прозрачную роговицу и зрачок и попадает на хрусталик. Хрусталик обеспечивает фокусировку изображения на сетчатке, после прохождения его через прозрачное стекловидное тело. На сетчатке изображение получается уменьшенным и перевернутым. Свет на сетчатке вызывает возбуждение фоторецепторов и преобразование света в нервные импульсы. Нервные импульсы передаются в головной мозг через зрительный нерв. Зрительные нервы проникают в череп через специальные отверстия и сходятся вместе, а затем внутренние части нерва перекрещиваются и снова расходятся, формируя зрительные тракты. В результате все, что мы видим справа, оказывается в левом зрительном тракте, а то, что слева, в правом. Зрительные тракты заканчиваются в верхних буграх четверохолмия среднего мозга и зрительных буграх таламуса, где информация проходит дополнительную обработку. Окончательная обработка информации происходит в зрительных зонах затылочных долей обоих полушарий, там изображение снова переворачивается «с головы на ноги».

    12. В чём причина таких нарушений зрения, как близорукость и дальнозоркость? Какие процессы корректируют линзами очков? Расскажите о профилактике этих заболеваний.

    Близорукость – нарушение зрения, при котором изображение формируется перед сетчаткой. Близорукий человек четко видит только близко расположенные предметы. Дальнозоркость – нарушение зрения, при котором изображение формируется перед сетчаткой. Человек с такой патологией лучше видит предметы, расположенные на расстоянии. Причины таких патологий бывают врожденными и приобретенными. К врожденным относятся врожденные удлиненное (близорукость) или укороченное (дальнозоркость) глазное яблоко. К приобретенным относятся увеличение кривизны хрусталика или ослабление ресничной мышцы (близорукость); уплотнение хрусталика, приводящее к потере его эластичности и уменьшению кривизны (дальнозоркость, чаще встречается у стариков). Линзы очков создают дополнительное рассеивание света при дальнозоркости или больший угол преломления при близорукости.

    Профилактика этих заболеваний состоит в соблюдении определенной гигиены зрения. К этому можно отнести занятия зрительной гимнастикой при утомлении глаз, чтение и письмо при достаточном освещении, так чтобы для правшей свет падал слева, а для левшей справа. Расстояния от глаза до предмета должно составлять 30-35 см; после каждых 30-40 мин работы за компьютером необходимо делать 10-15 мин перерывы, при просмотре телевизора расстояние до него должно быть не менее 2,5 -3 м и время просмотра не должно превышать 30-40 мин в день. В вечернее время при работе за компьютером или при просмотре телевизора необходимо включать освещение.

    13. Почему говорят, что глаз смотрит, а мозг видит?

    Глаз является только периферическим отделом зрительного анализатора, обработка же изображений происходит в коре больших полушарий. При травмах затылочной доли человек перестает видеть, то есть изображение формируется на сетчатке глаза, он как бы смотрит, но не распознает и не узнает предметы, он их не видит.

    У большинства людей понятие «зрение» ассоциируется с глазами. На самом деле глаза – это только часть сложного органа, именуемого в медицине зрительный анализатор. Глаза являются лишь проводником информации извне к нервным окончаниям. А сама способность видеть, различать цвета, размеры, формы, расстояние и движение обеспечивается именно зрительным анализатором – системой сложной структуры, которая включает несколько отделов, взаимосвязанных между собой.

    Знание анатомии зрительного анализатора человека позволяет правильно диагностировать различные заболевания, определять их причину, выбирать правильную тактику лечения, проводить сложные хирургические операции. У каждого из отделов зрительного анализатора есть свои функции, но между собой они тесно взаимосвязаны. Если хоть какая-то из функций органа зрения нарушается, это неизменно сказывается на качестве восприятия действительности. Восстановить его можно, только зная, где скрыта проблема. Вот почему так важно знание и понимание физиологии глаза человека.

    Строение и отделы

    Строение зрительного анализатора сложное, но именно благодаря этому мы можем воспринимать окружающий мир настолько ярко и полно. Состоит он из таких частей:

    • Периферический отдел – здесь расположены рецепторы сетчатки глаза.
    • Проводниковая часть – это зрительный нерв.
    • Центральный отдел – центр зрительного анализатора локализован в затылочной части головы человека.

    Работу зрительного анализатора по своей сути можно сравнить с системой телевидения: антенной, проводами и телевизором

    Основные функции зрительного анализатора – это восприятие, проведение и обработка зрительной информации. Анализатор глаза не работает в первую очередь без глазного яблока – это и есть его периферическая часть, на которую приходятся основные зрительные функции.

    Схема строения непосредственного глазного яблока включает 10 элементов:

    • склера – это наружная оболочка глазного яблока, сравнительно плотная и непрозрачная, в ней есть сосуды и нервные окончания, она соединяется в передней части с роговицей, а в задней – с сетчаткой;
    • сосудистая оболочка – обеспечивает провод питательных веществ вместе с кровью к сетчатке глаза;
    • сетчатка – этот элемент, состоящий из клеток фото-рецепторов, обеспечивает чувствительность глазного яблока к свету. Фоторецепторы бывают двух видов – палочки и колбочки. Палочки отвечают за периферическое зрение, они отличаются высокой светочувствительностью. Благодаря клеткам-палочкам, человек способен видеть в сумерках. Функциональная особенность колбочек совершенно другая. Они позволяют глазу воспринимать различные цвета и мелкие детали. Колбочки отвечают за центральное зрение. Оба вида клеток вырабатывают родопсин – вещество, которое преобразует световую энергию в электрическую. Именно ее способен воспринимать и расшифровывать корковый отдел головного мозга;
    • роговица – это прозрачная часть в переднем отделе глазного яблока, здесь происходит преломление света. Особенность роговицы состоит в том, что в ней совсем нет кровеносных сосудов;
    • радужная оболочка – оптически это самая яркая часть глазного яблока, здесь сосредоточен пигмент, отвечающий за цвет глаз человека. Чем его больше и чем ближе он к поверхности радужки, тем темнее будет цвет глаз. Структурно радужная оболочка представляет собой мышечные волокна, которые отвечают за сокращение зрачка, который, в свою очередь, регулирует количество света, передающегося к сетчатке;
    • ресничная мышца – иногда ее называют ресничным пояском, главная характеристика этого элемента – регулировка хрусталика, благодаря чему взгляд человека может быстро сфокусироваться на одном предмете;
    • хрусталик – это прозрачная линза глаза, главная его задача – фокусировка на одном предмете. Хрусталик эластичен, это свойство усиливается окружающими его мышцами, благодаря чему человек может отчетливо видеть и вблизи, и вдали;
    • стекловидное тело – это прозрачная гелеобразная субстанция, заполняющая глазное яблоко. Именно оно формирует его округлую, устойчивую форму, а также пропускает свет от хрусталика к сетчатке;
    • зрительный нерв – это основная часть проводящего пути информации от глазного яблока в области коры головного мозга, обрабатывающие ее;
    • желтое пятно – это участок максимальной остроты зрения, он расположен напротив зрачка над местом входа зрительного нерва. Свое название пятно получило за большое содержание пигмента желтого цвета. Примечательно, что некоторые хищные птицы, отличающиеся острым зрением, имеют целых три желтых пятна на глазном яблоке.

    Периферия собирает максимум зрительной информации, которая затем через проводниковый отдел зрительного анализатора передается к клеткам коры головного мозга для дальнейшей обработки.


    Вот так схематично выглядит строение глазного яблока в разрезе

    Вспомогательные элементы глазного яблока

    Глаз человека подвижен, что позволяет улавливать большое количество информации со всех направлений и быстро реагировать на раздражители. Подвижность обеспечивается мышцами, охватывающими глазное яблоко. Всего их три пары:

    • Пара, обеспечивающая движение глаза вверх и вниз.
    • Пара, отвечающая за движение влево и вправо.
    • Пара, благодаря которой глазное яблоко может вращаться относительно оптической оси.

    Этого достаточно, чтобы человек мог смотреть в самых разных направлениях, не поворачивая головы, и быстро реагировать на зрительные раздражители. Движение мышц обеспечивается глазодвигательными нервами.

    Также к вспомогательным элементам зрительного аппарата относятся:

    • веки и ресницы;
    • конъюнктива;
    • слезный аппарат.

    Веки и ресницы выполняют защитную функцию, образуя физическую преграду для проникновения инородных тел и веществ, воздействия слишком яркого света. Веки представляют собой эластичные пластины из соединительной ткани, покрытые снаружи кожей, а изнутри – конъюнктивой. Конъюнктива – это слизистая оболочка, выстилающая сам глаз и веко изнутри. Ее функция тоже защитная, но обеспечивается она за счет выработки специального секрета, увлажняющего глазное яблоко и образующая невидимую естественную пленку.


    Зрительная система человека устроена сложно, но вполне логично, каждый элемент несет определенную функцию и тесно связан с другими

    Слезный аппарат – это слезные железы, от которых по протокам слезная жидкость выводится в конъюнктивальный мешок. Железы парные, расположены они в уголках глаз. Также во внутреннем уголке глаза находится слезное озерцо, куда стекает слеза после того, как омыла наружную часть глазного яблока. Оттуда слезная жидкость переходит в слезно-носовой проток и стекает в нижние отделы носовых проходов.

    Это естественный и постоянный процесс, никак не ощущаемый человеком. Но когда слезной жидкости вырабатывается слишком много, слезно-носовой проток не в состоянии ее принять и переместить всю одновременно. Жидкость переливается через край слезного озерца – образуются слезы. Если же, наоборот, по каким-то причинам слезной жидкости вырабатывается слишком мало или же она не может продвигаться через слезные протоки по причине их закупорки, возникает сухость глаза. Человек ощущает сильный дискомфорт, боль и резь в глазах.

    Как происходит восприятие и передача зрительной информации

    Чтобы понять, как же работает зрительный анализатор, стоит представить себе телевизор и антенну. Антенна – это глазное яблоко. Оно реагирует на раздражитель, воспринимает его, преобразует в электрическую волну и передает к головному мозгу. Осуществляется это посредством проводникового отдела зрительного анализатора, состоящего из нервных волокон. Их можно сравнить с телевизионным кабелем. Корковый отдел – это телевизор, он обрабатывает волну и расшифровывает ее. В результате получается привычная для нашего восприятия зрительная картинка.


    Зрение человека – это намного сложнее и больше, чем просто глаза. Это сложный многоступенчатый процесс, осуществляемый, благодаря слаженной работе группы различных органов и элементов

    Подробнее стоит рассмотреть проводниковый отдел. Он состоит из перекрещенных нервных окончаний, то есть информация от правого глаза идет к левому полушарию, а от левого – к правому. Почему именно так? Все просто и логично. Дело в том, что для оптимальной расшифровки сигнала от глазного яблока к корковому отделу его путь должен быть максимально коротким. Участок в правом полушарии мозга, ответственный за расшифровку сигнала, расположен ближе к левому глазу, чем к правому. И наоборот. Вот почему сигналы передаются по перекрещенным путям.

    Перекрещенные нервы далее образуют так называемый зрительный тракт. Здесь информация от разных частей глаза передается для расшифровки к разным частям головного мозга, чтобы сформировалась четкая зрительная картинка. Мозг уже может определить яркость, степень освещенности, цветовую гамму.

    Что происходит дальше? Уже почти окончательно обработанный зрительный сигнал поступает в корковый отдел, осталось только извлечь из него информацию. В этом и заключаются основные функции зрительного анализатора. Здесь осуществляются:

    • восприятие сложных зрительных объектов, например, печатного текста в книге;
    • оценка размеров, формы, удаленности предметов;
    • формирование восприятия перспективы;
    • различие между плоскими и объемными предметами;
    • объединение всей полученной информации в целостную картинку.

    Итак, благодаря слаженной работе всех отделов и элементов зрительного анализатора, человек способен не только видеть, но и понимать увиденное. Те 90% информации, которую мы получаем из окружающего мира через глаза, поступает к нам именно таким многоступенчатым путем.

    Как изменяется зрительный анализатор с возрастом

    Возрастные особенности зрительного анализатора неодинаковы: у новорожденного он еще не сформирован до конца, младенцы не могут фокусировать взгляд, быстро реагировать на раздражители, в полной мере обрабатывать полученную информацию, чтобы воспринимать цвет, размер, форму, удаленность предметов.


    Новорожденные дети воспринимают мир в перевернутом виде и в черно-белом цвете, так как формирование зрительного анализатора у них еще полностью не завершено

    К 1 году зрение ребенка становится почти таким же острым, как у взрослого человека, что можно проверить по специальным таблицам. Но полное завершение формирования зрительного анализатора наступает только к 10–11 годам. До 60 лет в среднем, при условии соблюдения гигиены органов зрения и профилактики патологий, зрительный аппарат работает исправно. Затем начинается ослабление функций, что обусловлено естественным износом мышечных волокон, сосудов и нервных окончаний.

    Получать трехмерное изображение мы можем, благодаря тому, что у нас есть два глаза. Выше уже говорилось о том, что правый глаз передает волну к левому полушарию, а левый наоборот, к правому. Далее обе волны соединяются, направляются к нужным отделам для расшифровки. При этом каждый глаз видит свою «картинку», и только при правильном сопоставлении они дают четкое и яркое изображение. Если же на каком-то из этапов происходит сбой, происходит нарушение бинокулярного зрения. Человек видит сразу две картинки, причем они различные.


    Сбой на любом этапе передачи и обработки информации в зрительном анализаторе приводит к различным нарушениям зрения

    Зрительный анализатор не напрасно сравнивают с телевизором. Изображение предметов, после того как они пройдут преломление на сетчатке, поступает к головному мозгу в перевернутом виде. И только в соответствующих отделах преобразуется в более удобную для восприятия человека форму, то есть возвращается «с головы на ноги».

    Есть версия, что новорожденные дети видят именно так – в перевернутом виде. К сожалению, рассказать об этом сами они не могут, а проверить теорию с помощью специальной аппаратуры пока что невозможно. Скорее всего они воспринимают зрительные раздражители так же, как и взрослые люди, но поскольку зрительный анализатор сформирован еще не до конца, полученная информация не обрабатывается и адаптируется полностью для восприятия. Малыш просто не справится с такими объемными нагрузками.

    Таким образом, строение глаза сложное, но продуманное и почти совершенное. Сначала свет попадает на периферическую часть глазного яблока, проходит через зрачок к сетчатке, преломляется в хрусталике, затем преобразуется в электрическую волну и проходит по перекрещенным нервным волокнам к коре головного мозга. Здесь происходит расшифровка и оценка полученной информации, а затем ее декодирование в понятную для нашего восприятия зрительную картинку. Это, действительно, схоже с антенной, кабелем и телевизором. Но намного филигранней, логичней и удивительней, ведь это создала сама природа, и под этим сложным процессом на самом деле подразумевается то, что мы называем зрением.

    Прекрасный мир, полный красок, звуков и запахов, дарят нам наши органы чувств
    М.А. ОСТРОВСКИЙ

    Цель урока : изучение зрительного анализатора.

    Задачи : определение понятия «анализатор», изучение работы анализатора, развитие навыков экспериментальной деятельности и логического мышления, развитие творческой активности учащихся.

    Тип урока : изложение нового материала с элементами экспериментальной деятельности и интеграции.

    Методы и приемы : поисковый, исследовательский.

    Оборудование : муляжи глаза; таблица «Строение глаза»; самодельные таблицы «Направление лучей», «Палочки и колбочки»; раздаточный материал: карточки с изображением строения глаза, нарушений зрения.

    Ход урока

    I. Актуализация знаний

    Степного неба свод желанный.
    Степного воздуха струи,
    На вас я в неге бездыханной
    Остановил глаза мои.

    Взгляни на звезды: много звезд
    В безмолвии ночном
    Горит, блестит кругом луны
    На небе голубом.

    Е.Баратынский

    Ветер принес издалёка
    Песни весенний намек,
    Где-то светло и глубоко
    Неба открылся клочок.

    Какие образы создали поэты! Что позволило их сформировать? Оказывается, в этом помогают анализаторы. О них и пойдет сегодня речь. Анализатор – это сложная система, обеспечивающая анализ раздражений. Как возникают и где анализируются раздражения? Приемники внешних воздействий – рецепторы. Куда дальше направляется раздражение и что происходит при его анализе? (Учащиеся высказывают свои мнения .)

    II. Изучение нового материала

    Раздражение преобразуется в нервный импульс и по нервному пути попадает в головной мозг, где и анализируется. (Одновременно с беседой составляем опорную схему, затем обсуждаем ее с учащимися. )

    Какова роль зрения в жизни человека? Зрение необходимо для трудовой деятельности, для обучения, для эстетического развития, для передачи социального опыта. Примерно 70% всей информации мы получаем с помощью зрения. Глаз – это окно в окружающий мир. Этот орган часто сравнивают с фотоаппаратом. Роль объектива выполняет хрусталик. (Демонстрация муляжей, таблиц .) Диафрагма объектива – зрачок, его диаметр изменяется в зависимости от освещенности. Как на фотопленке или светочувствительной матрице фотоаппарата, на сетчатке глаза появляется изображение. Однако система зрения более совершенна, чем обычный фотоаппарат: сама сетчатка и мозг исправляют изображение, делают его более четким, объемным, цветным и, наконец, осмысленным.

    Ознакомьтесь со строением глаза более детально. Посмотрите на таблицы и муляжи, воспользуйтесь иллюстрациями в учебнике.

    Давайте изобразим схему «Строение глаза».

    Фиброзная оболочка

    Задняя – непрозрачная – склера
    Передняя – прозрачная – роговица

    Сосудистая оболочка

    Передняя – радужка, содержит пигмент
    В центре радужки – зрачок

    Хрусталик
    Сетчатка
    Брови
    Веки
    Ресницы
    Слезный проток
    Слезная железа
    Глазодвигательные мышцы

    «Стянутая рыбачья сеть, закинутая на дно глазного бокала и ловящая солнечные лучи!» – так представлял себе древнегреческий врач Герофил сетчатку глаза. Это поэтическое сравнение оказалось удивительно точным. Сетчатка – именно сеть, и именно ловящая отдельные кванты света. Она напоминает слоеный пирог толщиной в 0,15–0,4 мм, каждый слой – это множество клеток, отростки которых сплетаются и образуют ажурную сеть. От клеток последнего слоя отходят длинные отростки, которые, собираясь в пучок, образуют зрительный нерв .

    Более миллиона волокон зрительного нерва несут в мозг информацию, закодированную сетчаткой в виде слабых биоэлектрических импульсов. Место на сетчатке, где волокна сходятся в пучок, называют слепым пятном .

    Слой сетчатки, образованный светочувствительными клетками – палочками и колбочками, поглощает свет. Именно в них происходит превращение света в зрительную информацию.

    Мы с вами познакомились с первым звеном зрительного анализатора – рецепторами. Посмотрите на изображение рецепторов света, они по форме напоминают палочки и колбочки. Палочки обеспечивают черно-белое зрение. Они примерно в 100 раз чувствительнее к свету, чем колбочки, и расположены так, что их плотность возрастает от центра к краям сетчатки. Зрительный пигмент палочек хорошо поглощает сине-голубые лучи, а красные, зеленые и фиолетовые плохо. Цветное зрение обеспечивают колбочки трех типов, которые чувствительны соответственно к фиолетовому, зеленому и красному цветам. Напротив зрачка на сетчатке размещается наибольшее скопление колбочек. Это место называют желтым пятном .

    Вспомните красный мак и голубой василек. Днем они ярко окрашены, а в сумерках мак почти черный, а василек – белесо-синий. Почему? (Учащиеся высказывают мнения. ) Днем при хорошем освещении работают и колбочки, и палочки, а ночью, когда света для колбочек недостаточно, только палочки. Впервые этот факт описал чешский физиолог Пуркинье в 1823 г.

    Эксперимент «Палочковое зрение». Возьмите небольшой предмет, например карандаш, окрашенный в красный цвет, и, глядя прямо перед собой, попробуйте увидеть его боковым зрением. Предмет надо непрерывно двигать, тогда удастся найти положение, при котором красный цвет будет восприниматься как черный. Объясните, почему при этом карандаш расположен так, что его изображение проецируется на край сетчатки. (На краю сетчатки почти отсутствуют колбочки, а палочки цвета не различают, поэтому изображение и кажется почти черным. )

    Мы с вами уже знаем, что зрительная зона коры больших полушарий головного мозга расположена в затылочной части. Давайте составим опорную схему «Зрительный анализатор».

    Таким образом, зрительный анализатор – это сложная система восприятия и обработки информации о внешнем мире. Зрительный анализатор имеет большие резервы. В сетчатке глаза содержится 5–6 млн колбочек и около 110 млн палочек, а в зрительной зоне коры больших полушарий – примерно 500 млн нейронов. Несмотря на высокую надежность зрительного анализатора, его функции могут нарушаться под действием различных факторов. Отчего это происходит и к каким изменениям приводит? (Учащиеся высказывают свое мнение .)

    Обратите внимание, что при хорошем зрении изображение предметов, находящихся на расстоянии наилучшего зрения (25 см), формируется точно на сетчатке. На рисунке в учебнике вы можете видеть, как изображение формируется у близорукого и дальнозоркого человека.

    Близорукость, дальнозоркость, астигматизм, дальтонизм – это частые нарушения зрения. Они могут иметь наследственный характер, но могут быть и приобретенными в течение жизни из-за неправильного режима труда, плохой освещенности рабочего стола, несоблюдения правил техники безопасности при работе на ПК, в мастерских и лабораториях, при долгом просмотре телевизора и т.д.

    Исследования показали, что через 60 мин непрерывного сидения у телевизора наступает снижение остроты зрения и способности различать цвета. Нервные клетки оказываются «перегруженными» ненужной информацией, вследствие чего ухудшается память и ослабевает внимание. В последние годы зарегистрирована особая форма нарушений функции нервной системы – фотоэпилепсия, сопровождающаяся судорожными припадками и даже потерей сознания. В Японии 17 декабря 1997 г. был зарегистрирован массовый приступ такой болезни. Как выяснилось, причиной стало быстрее мелькания изображений в одной из сцен мультфильма «Маленькие монстры».

    III. Закрепление пройденного, подведение итогов, выставление оценок

    Зрительный анализатор включает:

    периферический отдел: рецепторы сетчатки глаза;

    проводниковый отдел: зрительный нерв;

    центральный отдел: затылочная доля коры больших полушарий.

    Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

    Строения глаза

    Глаз состоит из глазного яблока и вспомогательного аппарата .

    Вспомогательный аппарат глаза

    брови - защита от пота;

    ресницы - защита от пыли;

    веки - механическая защита и поддержание влажности;

    слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

    Глазное яблоко

    Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

    Оно расположено на жировой подушке в переднем отделе глазницы.

    Глаз имеет три оболочки:

    белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;

    сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;

    сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

    Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

    Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

    Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

    Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

    Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

    Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

    Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

    Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

    Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

    Стекловидное тело - полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.

    Сетчатка (ретина) - рецепторный аппарат глаза.

    Строение сетчатки

    Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

    Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

    Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

    Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

    первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.

    вторые - биполярные нейроны;

    третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

    Светочувствительные элементы сетчатки:

    палочки - воспринимают яркость;

    колбочки - воспринимают цвет.

    Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

    Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

    В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

    При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

    От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называетсядиском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

    Мышцы глаза

    глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;

    мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
    Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
    Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.

    мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

    Проводниковый отдел

    Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

    Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ). После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

    Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

    Центральный отдел

    Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

    Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.

    Значение зрения Благодаря глазам мы с вами получаем 85 % информации об окружающем мире, они же, по подсчетам И.М. Сеченова, дают человеку до 1000 ощущений в минуту. Глаз позволяет увидеть предметы, их форму, размер, цвет, перемещения. Глаз способен различить хорошо освещенный предмет поперечником в одну десятую миллиметра на расстоянии 25 сантиметров. Но если предмет сам светится, он может быть и значительно меньше. Теоретически человек мог бы увидеть огонек свечи на расстоянии 200 км. Глаз способен различать чистых цветовых тонов и 5-10 миллионов смешанных оттенков. Полная адаптация глаза к темноте занимает минут.













    Схема строения глаза Рис.1. Схема строения глаза 1 - склера, 2 - сосудистая оболочка, 3 - сетчатка, 4 - роговица, 5 - радужка, 6 - ресничная мышца, 7 - хрусталик, 8 - стекловидное тело, 9 - диск зрительного нерва, 10 - зрительный нерв, 11 - желтое пятно.






    Основное вещество роговицы состоит из прозрачной соединительнотканной стромы и роговичных телец Спереди роговица покрыта многослойным эпителием. Роговица (роговая оболочка) передняя наиболее выпуклая прозрачная часть глазного яблока, одна из светопреломляющий х сред глаза.




    Радужная оболочка (радужка)-тонкая подвижная диафрагма глаза с отверстием (зрачком) в центре; расположена за роговицей, перед хрусталиком. Радужка содержит различное количество пигмента, от которого зависит её окраска «цвет глаз». Зрачок- круглое отверстие, через которое лучи света проникают внутрь и достигают сетчатки (величина зрачка изменяется [в зависимости от интенсивности светового потока: при ярком свете он уже, при слабом и в темноте шире].


    Хрусталик прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза. Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование,








    Фоторецепторы признаки палочки колбочки Длина 0,06 мм 0,035 мм Диаметр 0,002 мм 0,006 мм Количество 125 – 130 млн.6 – 7 млн. Изображение Черно-белое Цветное Вещество Родопсин (зрительный пурпур) иодопсин расположение Преобладают на периферии Преобладают в центральной части сетчатки Желтое пятно – скопление колбочек, Слепое пятно – место выхода зрительного нерва (рецепторов нет)


    Строение сетчатки: Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной к сосудистой оболочке глазного яблока. В ней выделяют две части: зрительную часть(рецептивное поле участок с фоторецепторными клетками (палочками или колбочками) и слепую часть (область на сетчатке, которая не чувствительна к свету). Свет падает слева и проходит через все слои, достигая фоторецепторов (колбочек и палочек). Которые и передают сигнал по зрительному нерву в мозг.


    Близорукость Близорукость (миопия) это дефект (аномалия рефракции) зрения, при котором изображение падает не на сетчатку глаза, а перед ней. Наиболее распространённая причина увеличенное (относительно нормального) в длину глазное яблоко. Более редкий вариант - когда преломляющая система глаза фокусирует лучи сильнее чем надо (и, как следствие, они опять-таки сходятся не на сетчатке, а перед ней). В любом из вариантов, при рассматривании удаленных предметов, на сетчатке возникает нечеткое, размытое изображение. Миопия чаще всего развивается в школьные годы, а также во время учёбы в средних и высших учебных заведениях и связана с длительной зрительной работой на близком расстоянии (чтение, письмо, черчение), особенно при неправильном освещении и плохих гигиенических условиях. С ведением информатики в школах и распространением персональных компьютеров положение стало ещё более серьёзным.


    Дальнозоркость (гиперметропия) особенность рефракции глаза, состоящая в том, что изображения далеких предметов в покое аккомодации фокусируются за сетчаткой. В молодом возрасте при не слишком высокой дальнозоркости с помощью напряжения аккомодации можно сфокусировать изображение на сетчатке. Одной из причин дальнозоркости может быть уменьшенный размер глазного яблока на передне-задней оси. Практически все младенцы дальнозоркие. Но с возрастом у большинства этот дефект пропадает в связи с ростом глазного яблока. Причина возрастной (старческой) дальнозоркости (пресбиопии) уменьшение способности хрусталика изменять кривизну. Этот процесс начинается в возрасте около 25 лет, но лишь к 4050 годам приводит к снижению остроты зрения зрения при чтении на обычном расстоянии от глаз (2530 см). Дальтонизм До 14 месяцев у новорожденных девочек и до 16 месяцев у мальчиков наблюдается период полного невосприятия цветов. Формирование цветоощущения заканчивается к 7,5 годам у девочек и к 8 годам у мальчиков. Около 10% мужчин и менее 1% женщин имеют дефект цветового зрения (неразличение красного и зеленого цветов или, реже, синего; может быть полное неразличение цветов)