Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Неспецифические факторы защиты организма от инфекции. Иммунологические механизмы

    Неспецифические факторы защиты организма от инфекции. Иммунологические механизмы

    Существуют механические, химические и биологические факторы, предохраняющие организм от вредных воздействий различных микроорганизмов.

    Кожа . Неповрежденная кожа является барьером для проникновения микроорганизмов. При этом имеют значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, которые способствуют удалению микроорганизмов с кожи.

    Роль химических факторов защиты также выполняют выделения желез кожи (сальных и потовых). Они содержат жирные и молочные кислоты, обладающие бактерицидным (убивающим бактерии) действием.

    Биологические факторы защиты обусловлены губительным воздействием нормальной микрофлоры кожи на патогенные микроорганизмы.

    Слизистые оболочки разных органов являются одним из барьеров на пути проникновения микроорганизмов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с различными микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Такое же воздействие на бактерий оказывают волоски носовых ходов. Кашель и чиханье способствуют удалению микроорганизмов, предотвращают их аспирацию (вдыхание).

    В слезах, слюне, материнском молоке и других жидкостях организма содержится лизоцим. Он оказывает губительное (химическое) действие на микроорганизмы. Также влияет на микроорганизмы кислая среда желудочного содержимого.

    Нормальная микрофлора слизистых оболочек, как фактор биологической защиты, является антагонистом патогенных микроорганизмов.

    Контрольные вопросы

    1. Что такое неспецифические факторы защиты?

    2. Какие факторы препятствуют проникновению патогенных микроорганизмов через кожу и слизистые оболочки?

    Воспаление - реакция макроорганизма на чужеродные частицы, проникающие в его внутреннюю среду. Одной из причин воспаления является внедрение в организм возбудителей инфекции. Развитие воспаления приводит к уничтожению микроорганизмов или освобождению от них.

    Воспаление характеризуется нарушением циркуляции крови и лимфы в очаге поражения. Оно сопровождается повышением температуры, отеком, краснотой и болевыми ощущениями.

    Клеточные факторы неспецифической защиты

    Фагоцитоз

    Одним из основных механизмов воспаления является фагоцитоз - процесс поглощения бактерий.

    Явление фагоцитоза впервые описано И. И. Мечниковым. Он начал изучение фагоцитоза от одноклеточной амебы, для которой фагоцитоз является способом усвоения пищи. Проследив этот процесс на разных ступенях развития животного мира, И. И. Мечников завершил его открытием специализированных клеток человека, с помощью которых происходит уничтожение бактерий, рассасывание мертвых клеток, очагов кровоизлияний и т. д. Так было создано учение о фагоцитозе, которое и сегодня имеет огромное значение.

    Фагоцитарной активностью обладают различные клетки организма (лейкоциты крови, эндотелиальные клетки кровеносных сосудов). Наиболее выражена эта активность у подвижных полиморфноядерных лейкоцитов, моноцитов крови и тканевых макрофагов, в меньшей степени - у клеток костного мозга. Все одноядерные фагоцитирующие клетки (и их костномозговые предшественники) объединены в систему мононуклеарных фагоцитов (СМФ).

    Фагоцитирующие клетки имеют лизосомы, в которых находится более 25 различных гидролитических ферментов и белков, обладающих антибактериальными свойствами.

    Стадии фагоцитоза . Этап 1 - приближение фагоцита к объекту за счет химического влияния последнего. Это движение называют положительным хемотаксисом (в сторону объекта).

    Этап 2 - прилипание микроорганизмов к фагоцитам.

    Этап 3 - поглощение микроорганизмов клеткой, образование фагосомы.

    Этап 4 - образование фаголизосомы, куда поступают ферменты и бактерицидные белки, гибель и переваривание возбудителя.

    Процесс, который заканчивается гибелью фагоцитированных микробов, называется завершенным фагоцитозом.

    Однако некоторые микроорганизмы, находясь внутри фагоцитов, не погибают, а иногда даже размножаются в них. Это - гонококки, микобактерии туберкулеза, бруцеллы. Такое явление называют незавершенным фагоцитозом; при этом погибают фагоциты.

    Как и другие физиологические функции, фагоцитоз зависит от состояния организма - регулирующей роли центральной нервной системы, питания, возраста.

    Фагоцитарная деятельность лейкоцитов изменяется при многих и часто неинфекционных заболеваниях. Определяя ряд показателей фагоцитоза, можно установить течение болезни - выздоровление или ухудшение состояния больного, эффективность проводимого лечения и пр.

    Для оценки функционального состояния фагоцитов чаще всего определяют поглотительную активность по двум тестам: 1) фагоцитарный показатель - процент фагоцитирующих клеток (число лейкоцитов с поглощенными микробами из 100 наблюдаемых); 2) фагоцитарное число - среднее количество поглощенных одним лейкоцитом микробов или других объектов фагоцитоза.

    Бактерицидные возможности фагоцитов определяют по числу лизосом, активности внутриклеточных ферментов и другими методами.

    Активность фагоцитоза связана с наличием в сыворотке крови антител - опсонинов. Эти антитела усиливают фагоцитоз, готовят поверхность клетки к поглощению ее фагоцитом.

    Активность фагоцитоза в значительной степени определяет невосприимчивость организма к тому или иному возбудителю. При одних заболеваниях фагоцитоз является основным фактором защиты, при других - вспомогательным. Однако во всех случаях отсутствие фагоцитарной способности клеток резко ухудшает течение и прогноз заболевания.

    Клеточная реактивность

    Развитие инфекционного процесса и формирование иммунитета полностью зависят от первичной чувствительности клеток к возбудителю. Наследственный видовой иммунитет - пример отсутствия чувствительности клеток одного вида животных к микроорганизмам, патогенным для других. Механизм этого явления изучен недостаточно. Известно, что реактивность клеток меняется с возрастом и под влиянием различных факторов (физических, химических, биологических).

    Контрольные вопросы

    1. Что такое фагоцитоз?

    2. Какие стадии фагоцитоза Вы знаете?

    3. Что такое завершенный и незавершенный фагоцитоз?

    Гуморальные факторы неспецифической защиты

    Помимо фагоцитов, в крови находятся растворимые неспецифические вещества, губительно действующие на микроорганизмы. К ним относятся комплемент, пропердин, β-лизины, х-лизины, эритрин, лейкины, плакины, лизоцим и др.

    Комплемент (от лат. complementum - дополнение) представляет собой сложную систему белковых фракций крови, обладающую способностью лизировать микроорганизмы и другие чужеродные клетки, например эритроциты. Различают несколько компонентов комплемента: С1, С2, С3 и т.

    д. Комплемент разрушается при температуре 55° С в течение 30 мин. Это свойство называется термолабильностью. Он разрушается также при встряхивании, под влиянием УФ-лучей и т. п. Помимо сыворотки крови, комплемент обнаружен в различных жидкостях организма и в воспалительном экссудате, но отсутствует в передней камере глаза и спинномозговой жидкости.

    Пропердин (от лат. properde - подготовлять) - группа компонентов нормальной сыворотки крови, активирующая комплемент в присутствии ионов магния. Он сходен с ферментами и играет важную роль в устойчивости организма к инфекции. Снижение уровня пропердина в сыворотке крови свидетельствует о недостаточной активности иммунных процессов. β-лизины - термостабильные (устойчивые к действию температуры) вещества сыворотки крови человека, обладающие антимикробным действием, в основном по отношению к грамположительным бактериям. Разрушаются при 63° С и под действием УФ-лучей.

    Х-лизин - термостабильное вещество, выделенное из крови больных с высокой температурой. Обладает способностью без участия комплемента лизировать бактерии, главным образом грамотрицательные. Выдерживает нагревание до 70-100° С.

    Эритрин выделен из эритроцитов животных. Оказывает бактериостатическое действие на возбудителей дифтерии и некоторые другие микроорганизмы.

    Лейкины - бактерицидные вещества, выделенные из лейкоцитов. Термостабильны, разрушаются при 75-80° С. Обнаруживаются в крови в очень небольших количествах.

    Плакины - сходные с лейкинами вещества, выделенные из тромбоцитов.

    Лизоцим - фермент, разрушающий оболочку микробных клеток. Он содержится в слезах, слюне, жидкостях крови. Быстрое заживление ран конъюнктивы глаза, слизистых оболочек полости рта, носа объясняется в значительной степени наличием лизоцима.

    Бактерицидными свойствами обладают также составные компоненты мочи, простатическая жидкость, экстракты различных тканей. В нормальной сыворотке содержится в небольшом количестве интерферон.

    Контрольные вопросы

    1. Что такое гуморальные факторы неспецифической защиты?

    2. Какие гуморальные факторы неспецифической защиты Вы знаете?

    Механические факторы. Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.

    Физико-химические факторы. Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент, открытый в 1909 г. П. Л. Лащенко и выделенный в 1922 г. А. Флемингом, получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидкостях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.

    Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.

    Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, р-лизины, белок пропердин, фибронектин и др.

    Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. р-Лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок пропердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (з-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.Отдельные гуморальные факторы (некоторые компоненты комплемента, фибронектин и др.) вместе с антителами взаимодействуют с поверхностью микроорганизмов, способствуя их фагоцитозу, играя роль опсонинов.

    Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотокси-ческой активностью, называемые естественными киллерами, или МК-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор. В поддержании резистентности организма имеет большое значение и нормальная микрофлора организма (см. раздел 4.5).

    Фагоцитоз

    Фагоцитоз (от греч. phago – пожираю и cytos – клетка) -процесс поглощения и переваривания антигенных веществ, в том числе микроорганизмов, клетками мезодермального происхождения – фагоцитами. И. И. Мечников разделил фагоциты на макрофаги и микрофаги. В настоящее время макро- и микрофаги объединены в единую систему макрофагов (СМФ). К этой системе относят тканевые макрофаги – эпителиальные клетки, звездчатые ретикулоэндотелиоциты (клетки Купфера), альвеолярные и перитонеальные макрофаги, находящиеся в альвеолах и полости брюшины, белые отростчатые эпидермоциты кожи (клетки Лангерганса) и др.

    Функции макрофагов чрезвычайно разнообразны. Они первые реагируют на чужеродное вещество, являясь специализированными клетками, поглощающими и уничтожающими в организме чужеродные субстанции (отмирающие клетки, раковые клетки, бактерии, вирусы и другие микроорганизмы, антигены, не-метаболизируемые неорганические вещества). Кроме того, макрофаги вырабатывают многие биологически активные вещества – ферменты (в том числе лизоцим, пероксидазу, эстеразу), белки комплемента, иммуномодуляторы типа интерлейкинов. Наличие на поверхности макрофагов рецепторов к иммуноглобулинам (антителам) и комплементу, а также система медиаторов обеспечивают их взаимодействие с Т- и В-лимфоцитами. При этом макрофаги активируют защитные функции Т-лимфоцитов. Благодаря наличию рецепторов к комплементу и иммуноглобулинам, а также антигенов системы гистосовместимости (HLA) макрофаги принимают участие в связывании и распознавании антигенов.

    Механизм и стадии фагоцитоза. Одной из основных функций макрофагов является фагоцитоз, который представляет собой эн-доцитоз, осуществляемый в несколько стадий.

    Первая стадия – адсорбция частиц на поверхности макрофага за счет электростатических вандерваальсовых сил и химического сродства частиц к рецепторам фагоцита. Вторая стадия – инвагинация клеточной мембраны, захват частицы и погружение ее в протоплазму. Третья стадия – образование фагосомы, т. е. вакуоли (пузырька) в протоплазме вокруг поглощенной частицы. Четвертая стадия – слияние фагосомы с лизосомой фагоцита, содержащей десятки ферментов, и образование фаголизосомы. В фа-голизосоме происходит переваривание (деструкция) захваченной частицы ферментами. При поглощении частицы, принадлежащей организму (например, погибшая клетка или ее части, собственные белки и другие вещества), происходит расщепление ее ферментами фаголизосомы до неантигенных веществ (аминокислоты, жирные кислоты, нуклеотиды, моносахара). Если поглощается чужеродная частица, ферменты фаголизосомы не в состоянии расщепить вещество до неантигенных компонентов. В таких случаях фаголизосома с оставшейся и сохранившей чужеродность частью антигена передается макрофагом Т- и В-лимфоцитам, т. е. включается специфическое звено иммунитета. Эта передача неразрушенной части антигена (детерминанты) Т-лимфоциту осуществляется путем связывания детерминанты распознающим антигеном комплекса гистосовместимости, к которому на Т-лим-фоцитах имеются специфические рецепторы. Описанный механизм лежит в основе распознавания «своего» и «чужого» на уровне макрофага и явления фагоцитоза.

    Роль фагоцитоза. Фагоцитоз является важнейшей защитной реакцией. Фагоциты захватывают бактерии, грибы, вирусы и инак-тивируют их посредством набора ферментов и способности секретировать Н 2 О 2 и другие перекисные соединения, образующие активный кислород (завершенный фагоцитоз). Однако в некоторых случаях захваченные фагоцитом микроорганизмы выживают и размножаются в нем (например, гонококки, туберкулезная палочка, возбудитель ВИЧ-инфекции и др.). В таких случаях фагоцитоз называют незавершенным.Фагоцитоз усиливается антителами-опсонинами, так как связанный ими антиген легче адсорбируется на поверхности фагоцита вследствие наличия у последнего рецепторов к этим антителам. Такое усиление фагоцитоза антителами названо опсонизацией, т.е. подготовкой микроорганизмов к захвату фагоцитами. Фагоцитоз опсонизированных антигенов называют иммунным. Для характеристики активности фагоцитоза введен фагоцитарный показатель. Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом. Пользуются также опсонофагоцитарным индексом, представляющим отношение фагоцитарных показателей, полученных с иммунной и неиммунной сывороткой. Фагоцитарный показатель и опсонофагоцитарный индекс используют в клинической иммунологии для оценки состояния иммунитета и иммунного статуса. Фагоцитоз играет большую роль в противобактериальной, противогрибковой и противовирусной защите, поддержании резистентности организма к чужеродным веществам.

    Комплемент

    Природа комплемента. Комплемент представляет собой сложный комплекс белков сыворотки крови, реагирующих между собой в определенной последовательности и обеспечивающих участие антигенов и антител в клеточных и гуморальных реакциях иммунитета. Открыт комплемент французским ученым Ж. Борде, назвавшим его «алексином». Современное название комплементу дал П. Эрлих.

    Комплемент состоит из 20 различающихся по физико-химическим свойствам белков сыворотки крови, его обозначают символом «С», а девять основных компонентов комплемента – цифрами: С1, С2, ... С9. Каждый компонент имеет субъединицы, которые образуются при расщеплении; обозначаются они буквами: Clq, СЗа, СЗЬ и т.д. Белки комплемента являются глобулинами или гликопротеинами с молекулярной массой от 80 (С9) до 900 тыс. (С1). Вырабатываются макрофагами, нейтрофилами и составляют 5.10 % всех белков сыворотки крови.

    Механизм действия и функции. Комплемент выполняет разнообразные функции и является одним из главных компонентов иммунной системы. В организме комплемент находится в неактивном состоянии и активируется обычно в момент образования комплекса антиген – антитело. После активации его действие носит каскадный характер и представляет серию протео-литических реакций, направленных на усиление иммунных и клеточных реакций и активацию действия антител по устранению антигенов. Существует два пути активации комплемента: классический и альтернативный. При классическом способе активации происходит присоединение к комплексу антиген – антитело (АГ + AT) вначале компонента С1 комплемента (его трех субъединиц Clq, Clr, Cls), затем к образовавшемуся комплексу АГ + AT + СІ присоединяются последовательно «ранние» компоненты комплемента С4, С2, СЗ. Эти «ранние» компоненты активируют с помощью ферментов компонент С5, причем реакция протекает уже без участия комплекса АГ + AT. Компонент С5 прикрепляется к мембране клетки, и на нем образуется литический комплекс из «поздних» 1 компонентов комплемента С5Ь, С6, С7, С8, С9. Этот литический комплекс называется мембраноатакующим, так как он осуществляет лизис клетки.

    Альтернативный путь активации комплемента происходит без участия антител и осуществляется до выработки антител в организме. Альтернативный путь также заканчивается активацией компонента С5 и образованием мембраноатакующего комплекса, но без участия компонентов С1, С2, С4. Весь процесс начинается с активации компонента СЗ, которая может происходить непосредственно в результате прямого действия антигена (например, полисахарида микробной клетки). Активированный компонент СЗ взаимодействует с факторами В и D (ферментами) системы комплемента и белком пропердином (Р). Образовавшийся комплекс включает компонент С5, на котором и формируется мембраноатакующий комплекс, как и при классическом пути активации комплемента.Таким образом, классический и альтернативный пути активации комплемента завершаются образованием мембраноатакующего литического комплекса. Механизм действия этого комплекса на клетку до конца не выяснен. Однако известно, что этот комплекс внедряется в мембрану, образует как бы воронку с нарушением целостности мембраны. Это приводит к выходу из клетки низкомолекулярных компонентов цитоплазмы, а также белков, поступлению в клетку воды, что в конечном итоге приводит к гибели клетки.

    Как уже указывалось, процесс активации комплемента представляет каскадную ферментативную реакцию, в которой участвуют протеазы и эстеразы, в результате чего образуются продукты протеолиза компонентов С4, С2, СЗ, С5, фрагменты C4b, C2b, C3b, C5b, а также фрагменты СЗа и С5а. Если фрагменты C4b, C2b, C3b, C5b участвуют в активации системы комплемента, то фрагменты СЗа и С5а обладают особой биологической активностью. Они высвобождают гистамин из тучных клеток, вызывают сокращение гладкой мускулатуры, т. е. вызывают анафилактическую реакцию, поэтому они названы анафилотоксинами.

    Система комплемента обеспечивает:

    § цитолитическое и цитотоксическое действие антител на клетки-мишени благодаря образованию мембраноатакующего комплекса;

    § активацию фагоцитоза в результате связывания с иммунными комплексами и адсорбции их рецепторами макрофагов;

    § участие в индукции иммунного ответа вследствие обеспечения процесса доставки антигена макрофагами;

    § участие в реакции анафилаксии, а также в развитии воспаления вследствие того, что некоторые фрагменты комплемента обладают хемотаксической активностью. Следовательно, комплемент обладает многосторонней иммунологической активностью, участвует в освобождении организма от микроорганизмов и других антигенов, в уничтожении опухолевых клеток, отторжении трансплантатов, аллергических повреждениях тканей, индукции иммунного ответа.

    Интерферон

    Природа интерферона. Интерферон представляет собой белок, обладающий противовирусным, противоопухолевым и иммуно-модулирующим свойствами, вырабатываемый многими клетками в ответ на внедрение вируса или сложных биополимеров. Интерферон гетерогенен по своему составу, его молекулярная масса колеблется от 15 до 70 кД. Открыт в 1957 г. А. Айзексом и Ж. Линдеманом при изучении явления интерференции вирусов.Семейство интерферонов включает более 20 белков, различающихся по физико-химическим свойствам. Все они объединены в три группы по источнику происхождения: а, р, у. а-Интерферон вырабатывается В-лимфоцитами; его получают из лейкоцитов крови, поэтому называют лейкоцитарным. р-Интерфе-рон получают при заражении вирусами культуры клеток фиб-робластов человека; его называют фибробластным. у-Интерферон получают из иммунных Т-лимфоцитов, сенсибилизированных антигенами, поэтому его называют иммунным. Интерфероны обладают видовой специфичностью, т.е. интерферон человека менее эффективен для животных и наоборот.

    Механизм действия. Противовирусное, антипролиферативное и иммуномодулирующее действие интерферонов не связано с непосредственным влиянием на вирусы или клетки, т.е. интерферон не действует вне клетки. Абсорбируясь на поверхности клетки или проникая внутрь клетки, он через геном клетки влияет на процессы репродукции вируса или пролиферацию клетки. Поэтому действие интерферона в основном профилактическое, но его используют и в лечебных целях. Значение интерферонов. Интерферон играет большую роль в поддержании резистентности к вирусам, поэтому его применяют для профилактики и лечения многих вирусных инфекций (грипп, аденовирусы, герпес, вирусный гепатит и др.). Антипролиферативное действие, особенно у-интерферона, используют для лечения злокачественных опухолей, а иммуномодулирующее свойство – для коррекции работы иммунной системы с целью ее нормализации при различных иммунодефицитах.Разработан и производится ряд препаратов а-, р- и у-интерфе-ронов. Современные препараты получают методами биотехнологии, основанными на принципах генетической инженерии (см. главу 6).

    Антигены

    Антигены – это любые генетически чужеродные для данного организма вещества (обычно биополимеры), которые, попав во внутреннюю среду организма или образуясь в организме, вызывают ответную специфическую иммунологическую реакцию: синтез антител, появление сенсибилизированных лимфоцитов или возникновение толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов иммунологической памяти.

    Антитела, вырабатываемые в ответ на введение антигена, специфически взаимодействуют с этим антигеном in vitro и in vivo, образуя комплекс антиген – антитело.

    Антигены, вызывающие полноценный иммунный ответ, называются полными антигенами. Это органические вещества микробного, растительного и животного происхождения. Химические элементы, простые и сложные неорганические соединения антигенностью не обладают. Антигенами могут быть как вредные, так и безвредные для организма вещества. Антигенами являются также бактерии, грибы, простейшие, вирусы, клетки и ткани животных, попавшие во внутреннюю среду макроорганизма, а также клеточные стенки, цитоплазматические мембраны, рибосомы, митохондрии, микробные токсины, экстракты гельминтов, яды многих змей и пчел, природные белковые вещества, некоторые полисахаридные вещества микробного происхождения, растительные токсины и т. д. Антигенность определяется структурными особенностями биополимеров, являющихся генетически чужеродными для организма. Большинство из них содержат несколько видов антигенов. Количество антигенов в природе увеличивается в результате появления антигенных свойств у многих неантигенных субстанций при соединении их с другими веществами. Некоторые вещества самостоятельно не вызывают иммунного ответа, но приобретают эту способность при конъюгации с высокомолекулярными белковыми носителями или в смеси с ними. Такие вещества называют неполными антигенами, или гаптенами. Гаптенами могут быть химические вещества с малой молекулярной массой или более сложные химические вещества, не обладающие свойствами полного антигена: некоторые бактериальные полисахариды, полипептид туберкулезной палочки (РРД), ДНК, РНК, липиды, пептиды. Гаптен является частью полного или конъюгированного антигена. Образующиеся к конъюгату белка с гаптеном антитела могут также реагировать и со свободным гаптеном. Гаптены иммунного ответа не вызывают, но они вступают в реакцию с сыворотками, содержащими специфические к ним антитела.

    Антигены обладают специфичностью, которая связана с какой-либо определенной химической группой в составе молекулы, называемой детерминантой, или эпитопом. Детерминанты антигена – это те его части, которые распознаются антителами и иммунокомпетентными клетками. Полные антигены могут иметь в своем составе две и более однозначные детерминантные группировки, поэтому они являются двухвалентными или поливалентными. Неполные антигены (гаптены) имеют лишь одну детерминантную группировку, т.е. являются одновалещными.

    Наиболее выраженными антигенными свойствами обладают белки как биополимеры с выраженной генетической чужеродностью. Чем дальше друг от друга в филогенетическом развитии отстоят животные, тем большей антигенностью будут обладать их белки по отношению друг к другу. Это свойство белков используется для выявления филогенетического родства животных различных видов, а также в судебно-медицинской экспертизе (для определения видовой принадлежности пятен крови) и пищевой промышленности (для выявления фальсификации мясных продуктов).

    Большое значение имеет молекулярная масса антигена. Антигенностью обладают биополимеры молекулярной массой не менее 5-10 кД. Из этого правила существуют исключения: нуклеиновые кислоты обладают большой молекулярной массой, но по сравнению с белком их антигенные свойства гораздо менее выражены. Сывороточный альбумин и гемоглобин обладают одинаковой молекулярной массой (~ 70 000), но альбумин является более сильным антигеном, чем гемоглобин. Это обусловлено различием в валентности указанных белков, т.е. числе содержащихся в них детерминантных групп.

    Антигенность связывают с жесткой поверхностной структурой детерминант, расположением аминокислот, составляющих полипептидные цепи, особенно их концевые части. Например, желатин многие годы не считался антигеном из-за отсутствия жестких структур на поверхности молекулы, хотя представляет собой белок с большой молекулярной массой. Молекула желатина может "приобрести свойства антигена, если ввести в ее структуру тирозин или другое химическое вещество, придающее жесткость поверхностным структурам. Антигенная детерминанта полисахаридов состоит из нескольких гексозных остатков.Антигенные свойства желатина, гемоглобина и других слабых антигенов можно усилить, адсорбируя их на различных носителях (каолин, активированный уголь, химические полимеры, гидроокись алюминия и др.). Эти вещества повышают иммуноген-ность антигена. Они называются адъювантами (см. главу 9). На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ. Однако при слишком большой дозе антигена может наступить иммунологическая толерантность, т.е. отсутствие ответа организма на антигенное раздражение. Это явление можно объяснить стимуляцией антигеном субпопуляции супрессорных Т-лимфоцитов.

    Важным условием антигенности является растворимость антигена. Кератин – высокомолекулярный белок, но он не может быть представлен в виде коллоидного раствора и не является антигеном. Гаптены из-за небольшой молекулярной массы не фиксируются иммунокомпетентными клетками макроорганизма и не могут вызвать ответную иммунологическую реакцию. Если молекулу гаптена искусственно укрупнить, конъюгировав ее с крупной белковой молекулой, получится полноценный антиген, специфичность которого будет определять гаптен. Белок-носитель при этом может терять свою видовую специфичность, так как детерминанты гаптена расположены на его поверхности и перекрывают его собственные детерминанты. Полугаптены – неорганические радикалы (йод, бром, нит-рофуппа, азот и т. д.), присоединившиеся к белковой молекуле, могут менять иммунологическую специфичность белка.

    Такие йодированные или бромированные белки вызывают образование антител, специфичных к йоду и брому соответственно, т. е. к тем детерминантам, которые располагаются на поверхности полного антигена.

    Проантигены – гаптены, которые могут соединяться с собственными белками организма и сенсибилизировать его как аутоантигены. Например, продукты расщепления пенициллина в соединении с белками организма могут быть антигенами. Гетероантигены – общие антигены, встречающиеся у разных видов животных. Впервые этот феномен был отмечен в опытах Дж. Форсмана (1911), который иммунизировал кролика суспензией органов морской свинки. Полученная от кролика сыворотка содержала антитела, вступавшие во взаимодействие не только с белками морской свинки, но и с эритроцитами барана. Оказалось, что полисахариды морской свинки в антигенном отношении одинаковы с полисахаридами эритроцитов барана.

    Гетероантигены обнаружены у человека и некоторых видов бактерий. Например, возбудитель чумы и эритроциты человека с 0 группой крови имеют общие антигены. В результате иммунокомпетентные клетки этих людей не реагируют на возбудителя чумы как на чужеродный антиген и не развивают полноценной иммунологической реакции, что нередко приводит к летальному исходу.

    Аллоантигены (изоантигены) – различные антигены внутри одного вида. В настоящее время в эритроцитах человека обнаружено более 70 антигенов, которые дают около 200 000 сочетаний. Для практического здравоохранения решающее значение имеют группы крови в системе АВО и резус-антиген. Кроме эритроцитарных антигенов, у человека существуют и другие аллоантигены, например антигены главного комплекса гистосовместимости – МНС (Major Histocompatibility Complex). В 6-й паре хромосом человека располагаются трансплантационные антигены HLA (Human Leucocyte Antigens), детерминирующие тканевую совместимость при пересадке тканей и органов. Тканям человека присуща абсолютная индивидуальность, и подобрать донора и реципиента с одинаковым набором тканевых антигенов практически невозможно (исключение – однояйцевые близнецы). Клетки злокачественных опухолей также содержат антигены, отличающиеся от антигенов нормальных клеток, что используется для иммунодиагностики опухолей (см. главу 9).

    Антигены бактерий, вирусов, грибов, простейших являются полными антигенами. В соответствии с химическим составом, содержанием и качеством белков, липидов, их комплексов анти-генность у разных видов микроорганизмов различна. Поэтому каждый вид представляет собой антигенную мозаику (см. главу 2). Антигены микроорганизмов используют для получения вакцин и диагностических препаратов, а также идентификации и индикации микроорганизмов.

    В процессе эволюции антигенная структура некоторых микроорганизмов может меняться. Особенно большой изменчивостью антигенной структуры обладают вирусы (гриппа, ВИЧ). Таким образом, антигены, как генетически чужеродные вещества, осуществляют запуск иммунной системы, приведение ее в функционально активное состояние, выражающееся в проявлении тех или иных иммунологических реакций, направленных на устранение неблагоприятного воздействия антигена.

    9.9. Антителообразование

    Природа антител. В ответ на введение антигена иммунная система вырабатывает антитела – белки, способные специфически соединяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся антитела к γ-глобулинам, т. е. наименее подвижной в электрическом поле фракции белков сыворотки крови. В организме γ-гло-булины вырабатываются особыми клетками – плазмоцитами. Количество γ-глобулина в сыворотке крови составляет примерно 30% от всех белков крови (альбуминов, а-, b-глобулинов и др.). В соответствии с Международной классификацией γ-глобулины, несущие функции антител, получили название иммуноглобулинов и обозначаются символом Ig. Следовательно, антитела – это иммуноглобулины, вырабатываемые в ответ на введение антигена и способные специфически взаимодействовать с этим же антигеном.

    Функции антител. Первичная функция антител состоит во взаимодействии их активных центров с комплементарными им детерминантами антигенов. Вторичная функция антител состоит в их способности:

    § связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защиты от антигена;

    § участвовать в распознавании «чужого» антигена;

    § обеспечивать кооперацию иммунокомпетентных клеток (макрофагов, Т- и В-лимфоцитов);

    § участвовать в различных формах иммунного ответа (фагоцитоз, киллерная функция, ГНТ, ГЗТ, иммунологическая толерантность, иммунологическая память).

    Применение антител в медицине. Вследствие высокой специфичности и большой роли в защитных иммунных реакциях антитела используют для диагностики инфекционных и неинфекционных заболеваний, определения иммунного статуса организма, профилактики и терапии ряда инфекционных и неинфекционных болезней. Для этого существуют соответствующие иммунобиологические препараты, созданные на основе антител и имеющие целевое назначение (см. главу 10).

    Структура антител. Белки иммуноглобулинов по химическому составу относятся к гликопротеидам, так как состоят из протеина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Молекулярная масса иммуноглобулинов находится в пределах 150.900 кД. Их молекулы имеют цилиндрическую форму, они видны в электронном микроскопе. До 80% иммуноглобулинов имеют константу седиментации 7S; устойчивы к слабым кислотам, щелочам, нагреванию до 60ºС. Выделить иммуноглобулины из сыворотки крови можно физическими и химическими методами (электрофорез, изоэлектрическое осаждение спиртом и кислотами, высаливание, аффинная хроматография и др.). Эти методы используют в производстве при приготовлении иммунобиологических препаратов. Иммуноглобулины по структуре, антигенным и иммунобиологическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD. Иммуноглобулины М, G, А имеют подклассы. Например, IgG имеет четыре подкласса (IgG, IgG2, IgGj, IgG4). Все классы и подклассы различаются по аминокислотной последовательности. Иммуноглобулины человека и животных сходны по строению.

    Р. Портер и Д. Эдельман установили строение молекулы иммуноглобулинов. По их данным, молекулы иммуноглобулинов всех пяти классов состоят из полипептидных цепей: двух одинаковых тяжелых цепей Н (от англ, heavy – тяжелый) и двух одинаковых легких цепей – L (от англ, light – легкий), соединенных между собой дисульфидными мостиками. Соответственно каждому классу иммуноглобулинов, т.е. М, G, А, Е, D, различают пять типов тяжелых цепей: ц (мю), у (гамма), а (альфа), е (эпсилон) и 5 (дельта), имеющих молекулярную массу в пределах 50.70 кД (содержат 420-700 аминокислотных остатков) и различающихся по антигенносте. Легкие цепи всех пяти классов являются общими и бывают двух типов: к (каппа) и х (ламбда); имеют молекулярную массу 23 кД (214.219 аминокислотных остатков). L-цепи иммуноглобулинов различных классов могут вступать в соединение (рекомбинироваться) как с гомологичными, так и с гетерологичными Н-цепями. Однако в одной и той же молекуле могут быть только идентичные L-цепи (к или А.). Как в Н-, так и в L-цепях имеется вариабельная – V (от англ-various – разный) область, в которой последовательность аминокислот непостоянна, и константная – С (от англ, constant – постоянный) область с постоянным набором аминокислот. В легких и тяжелых цепях различают NH2- и СООН-концевые группы.При обработке γ-глобулина меркаптоэтанолом разрушаются дисульфидные связи и молекула иммуноглобулина распадается на отдельные цепи полипептидов. При воздействии протеолитическим ферментом папаином иммуноглобулин расщепляется на три фрагмента: два некристаллизующихся, содержащих детерми-нантные группы к антигену и названных Fab-фрагментами І и II (от англ, fragment antigen binding – фрагменты, связывающие антиген) и один кристаллизующий Fc-фрагмент (от англ, fragment crystal!izable). FabI- и FabII-фрагменты сходны по свойствам и аминокислотному составу и отличаются от Fc-фрагмента; Fab-и Fc-фрагменты являются компактными образованиями, соединенными между собой гибкими участками Н-цепи, благодаря чему молекулы иммуноглобулина имеют гибкую структуру. Как Н-цепи, так и L-цепи имеют отдельные, линейно связанные компактные участки, названные доменами; в Н-цепи их по 4, а в L-цепи – по 2. Активные центры, или детерминанты, которые формируются в V-областях, занимают примерно 2% поверхности молекулы иммуноглобулина. В каждой молекуле имеются две детерминанты, относящиеся к гипервариабельным участкам Н-и L-цепей, т. е. каждая молекула иммуноглобулина может связать две молекулы антигена. Поэтому антитела являются двухвалентными.

    Типовой структурой молекулы иммуноглобулина является IgG. Остальные классы иммуноглобулинов отличаются от IgG дополнительными элементами организации их молекул. Так, IgM представляет собой пентамер, т.е. пять молекул IgG, соединенных полипептидной цепью, обозначаемой буквой J (от англ, joining chain – строение молекулы). IgA бывает обычным, т. е. мономерным, а также ди- и тримерным. Различают IgA сывороточный и секреторный. В последнем молекула соединена с секреторным компонентом (SC), выделяемым эпителиальными клетками, что защищает IgA от разрушения ферментами. IgE обладает высокой цитофильностью, т.е. способностью присоединяться к тучным клеткам и базофилам, в результате чего клетки выделяют гистамин и гистаминоподобные вещества, вызывающие ГНТ. IgD склонен к агрегации, имеет дополнительные дисульфидные связи.

    В ответ на введение любого антигена могут вырабатываться антитела всех пяти классов. Обычно вначале вырабатывается IgM, затем IgG, остальные – несколько позже. Основную массу сывороточных иммуноглобулинов (70.80 %) составляет IgG; на долю IgA приходится 10-15 %, IgM – 5.10 %, IgE – 0,002 % и IgD – около 0,2 %. Содержание иммуноглобулинов меняется с возрастом. При некоторых патологических расстройствах наблюдаются отклонения в уровне их содержания в крови. Например, концентрация IgG возрастает при инфекционных болезнях, аутоиммунных расстройствах, снижается при некоторых опухолях, агаммаглобулинемии. Содержание IgM увеличивается при многих инфекционных болезнях, снижается при некоторых имму-нодефицитных состояниях.

    Синтез антител. Как уже было сказано, иммуноглобулины синтезируются плазмоцитами, которые образуются в результате дифференцировки полипотентной стволовой клетки. Плазмоцит синтезирует как неиммунный, так и иммунный γ-глобулин. Информацию о специфичности синтезируемого иммуноглобулина плаз-моциты получают от В-лимфоцитов; L- и Н-цепи синтезируются на полирибосомах плазмоцита отдельно и соединяются в единую молекулу перед выделением из клетки. Сборка молекулы иммуноглобулина из Н- и L-цепей происходит очень быстро, в течение 1 мин. Выделение иммуноглобулина из плазмоцита осуществляется путем экзоцитоза или клазматоза, т. е. отпочковывания части цитоплазмы с иммуноглобулином. Каждый плазмоцит синтезирует до 2000 молекул в секунду. Синтезированные антитела поступают в лимфу, кровь, тканевую жидкость.

    Генетика антител. Иммуноглобулин, как и всякий белок, обладает антигенностью. В молекуле иммуноглобулина различают три типа антигенных детерминант: изотипические, аллотипические и идиотипические. Изотипические детерминанты (изотипы) являются видовыми, т. е. они идентичны для всех особей данного вида (например, человека, кролика, собаки). Аллотипические детерминанты (аллотипы) у одних особей данного вида имеются, у других – отсутствуют, т. е. они являются индивидуальными. Наконец, идиотипические детерминанты (идиоти-пы) присущи только молекулам антител, обладающих определенной специфичностью. Эти детерминантные различия обусловлены числом и порядком чередования аминокислот в активном центре молекулы иммуноглобулина.

    Изотипические детерминанты располагаются в С-части Н- и L-цепей и служат для дифференцировки иммуноглобулинов на классы и подклассы. Аллотипические детерминанты отражают внутривидовые антигенные различия иммуноглобулинов, а идиотипические детерминанты – индивидуальные различия в строении активного центра. Следовательно, имеется огромное разнообразие иммуноглобулинов, различающихся по типу антигенных детерминант. В зависимости от изотипов существует 5 классов и множество подклассов; от аллотипов – только у Н-цепей известно до 20 разновидностей; с учетом идиотипов, т. е. строения активного центра, антитела различаются не только в классах и подклассах, но даже в аллотипах. Этим определяются множественность антител и их специфичность по отношению ко всему многообразию антигенов, существующих в природе. Число вариаций активных центров антител огромно, практически беспредельно, так как оно определяется числом Н- и L-цепей, их вариантами (аллотипами) и особенно идиотипическим разнообразием активных центров. Такое различие закреплено генетически и осуществляется в процессе формирования активных центров в зависимости от специфичности активного центра антигена. Иммуноглобулиновая молекула кодируется тремя группами генов. Одна группа кодирует Н-цепь любого класса, другая – L-цепь к-типа и третья – L-цепь Я-типа. Благодаря постоянным мутациям генов, мутациям клонов им-мунокомпетентных клеток, главным образом лимфоцитов, практически на введение любого антигена могут последовать реакция образования специфического антитела и размножение того клона лимфоцитов, который синтезирует антитела, комплементарные антигену. Следует подчеркнуть, что одна плазматическая клетка вырабатывает антитела только одной специфичности. Следовательно, в организме должно существовать множество клонов иммунокомпетентных клеток. Окончательно механизм синтеза и передачи по наследству способности выработки огромного количества специфических антител буквально к любому из многочисленных антигенов неясен. Наиболее полно этот механизм объясняют клонально-селекционная теория Ф. Бернета и теория С. Тонегавы.

    Под неспецифическими факторами защиты понимают врожденные внутренние механизмы поддержания генетического постоянства организма, обладающие широким диапазоном противомикробного действия. Именно неспецифические механизмы вступают в качестве первого защитного барьера на пути внедрения инфекционного агента. Неспецифические механизмы не нуждаются в перестройке, в то время как специфические агенты (антитела, сенсибилизированные лимфоциты) появляются спустя несколько дней. Важно отметить, что неспецифические факторы защиты действуют против многих патогенных агентов одновременно.

    Кожа. Неповрежденная кожа является мощным барьером для проникновения микроорганизмов. При этом имеют значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, обладающие бактерицидными свойствами (химический фактор).

    Слизистые оболочки. В разных органах они являются одним из барьеров на пути проникновения микробов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам. Кашель и чиханье способствуют удалению микробов. Слизистые оболочки выделяют секреты, обладающие бактерицидными свойствами, в ^частности за счет лизоцима и иммуноглобулина типа А.

    Секреты пищеварительного тракта наряду со своими специальными свойствами обладают способностью обезвреживать многие патогенные микробы. Слюна — первый секрет, обрабатывающий пищевые вещества, а также микрофлору, поступающую в ротовую полость. Кроме лизоцима слюна содержит ферменты (амилазу, фосфатазу и др.). Желудочный сок также губительно действует на многие патогенные микробы (выживают возбудители туберкулеза, сибиреязвенная бацилла). Желчь вызывает гибель пастерелл, но в отношении сальмонелл и кишечной палочки неэффективна.

    В кишечнике животного находятся миллиарды различных микроорганизмов, но в его слизистой оболочке содержатся мощные антимикробные факторы, в результате чего заражение через нее бывает редко. Нормальная микрофлора кишечника обладает выраженными антагонистическими свойствами по отношению ко многим патогенным и гнилостным микроорганизмам.

    Лимфатические узлы. В случае, если микроорганизмы преодолевают кожный и слизистый барьеры, то защитную функцию начинают выполнять лимфатические узлы. В них и инфицированном участке ткани развивается воспаление — важнейшая приспособительная реакция, направленная на ограниченное действие повреждающих факторов. В зоне воспаления происходит фиксация микробов образовавшимися нитями фибрина. В воспалительном процессе кроме свертывающей и фибринолитической систем принимают участие система комплемента, а также эндогенные медиаторы (простогландиды, вазоактивные амины и др.). Воспаление сопровождается повышением температуры, отеком, покраснением и болезненностью. В дальнейшем в освобождении организма от микробов и других чужеродных факторов активное участие принимает фагоцитоз (клеточные факторы защиты).

    Фагоцитоз (от греч. phago — ем, cytos — клетка) — процесс активного поглощения клетками организма попадающих в него патогенных живых или убитых микробов и других чужеродных частиц с последующим перевариванием при помощи внутриклеточных ферментов. У низших одноклеточных и многоклеточных организмов с помощью фагоцитоза осуществляется процесс питания. У высших организмов фагоцитоз приобрел свойство защитной реакции, освобождения организма от чужеродных веществ, как поступивших извне, так и образующихся непосредственно в самом организме. Следовательно, фагоцитоз не только реакция клеток на внедрение патогенных микробов — это более общая по сущности биологическая реакция клеточны£ элементов, которая отмечается как при патологических, так и при физиологических состояниях.

    Виды фагоцитирующих клеток. Фагоцитирующие клетки обычно делят на две основные категории: микрофаги (или полиморфно-нуклеарные фагоциты — ПМН) имакрофаги (или мононуклеарные фагоциты — МН). Абсолютное большинство фагоцитирующих ПМН составляют нейтрофилы. Среди макрофагов различают подвижные (циркулирующие) и неподвижные (оседлые) клетки. Подвижные макрофаги — это моноциты периферической крови, а неподвижные — это макрофаги печени, селезенки, лимфатических узлов, выстилающие стенки мелких сосудов и других органов и тканей.

    Одним из основных функциональных элементов макро- и микрофагов являются лизосомы — гранулы диаметром 0,25— 0,5 мкм, содержащие большой набор ферментов (кислая фосфатаза, В-глюкуронидаза, миелопероксидаза, коллагеназа, лизоцим и др.) и ряд других веществ (катионные белки, фагоцитин, лактоферрин), способных участвовать в разрушении различных антигенов.

    Фазы фагоцитарного процесса. Процесс фагоцитоза включает следующие этапы: 1) хемотаксис и прилипание (адгезия) частиц к поверхности фагоцитов; 2) постепенное погружение (захват) частиц в клетку с последующим отделением части клеточной мембраны и образованием фагосомы; 3) слияние фагосомы с лизосомами; 4) ферментативное переваривание захваченных частиц и удаление оставшихся микробных элементов. Активность фагоцитоза связана с наличием в сыворотке крови опсонинов. Опсонины — белки нормальной сыворотки крови, вступающие в соединение с микробами, благодаря чему последние становятся более доступными фагоцитозу. Различают термостабильные и термолабильные опсонины. Первые в основном относятся к иммуноглобулину G, хотя могут способствовать фагоцитозу опсонины, относящиеся к иммуноглобулинам А и М. К термолабильным опсонинам (разрушаются при температуре 56 °С в течение 20 мин) относятся компоненты системы комплемента — С1, С2, СЗ и С4.

    Фагоцитоз, при котором происходит гибель фагоцитированного микроба, называют завершенным (совершенным). Однако в ряде случаев микробы, находящиеся внутри фагоцитов, не погибают, а иногда даже размножаются (например, возбудитель туберкулеза, сибиреязвенная бацилла, некоторые вирусы и грибы). Такой фагоцитоз называют незавершенным (несовершенным). Следует отметить, что макрофаги кроме фагоцитоза выполняют регуляторные и эффекторные функции, кооперативно взаимодействуя с лимфоцитами в ходе специфического иммунного ответа.

    Гуморальные факторы. К гуморальным факторам неспецифической защиты организма отнесены: нормальные (естественные) антитела, лизоцим, пропердин, бета-лизины (лизины), комплемент, интерферон, ингибиторы вирусов в сыворотке крови и ряд других веществ, постоянно присутствующих в организме.

    Нормальные антитела. В крови животных и человека, которые ранее никогда не болели и не подвергались иммунизации, обнаруживают вещества, вступающие в реакцию со многими антигенами, но в низких титрах, не превышающих разведения 1:10—1:40. Эти вещества были названы нормальными или природными антителами. Считают, что они возникают в результате естественной иммунизации различными микроорганизмами.

    Лизоцим. Лизоцим относится к лизосомальным ферментам, содержится в слезах, слюне, носовой слизи, секрете слизистых оболочек, сыворотке крови и экстрактах органов и тканей, молоке, много лизоцима в белке яиц кур. Лизоцим устойчив к нагреванию (инактивируется при кипячении), обладает свойством лизировать живые и убитые, в основном грамположительные, микроорганизмы.

    Секреторный иммуноглобулин А. Выяснено, что SIgA постоянно присутствует в содержимом секретов слизистых оболочек, в секретах молочных и слюнных желез, в кишечном тракте, обладает выраженными противомикробными и противовирусными свойствами.

    Пропердин (лат. pro и perdere — подготовить к разрушению). Описан в 1954 г. Пиллимером как фактор неспецифической защиты и цитолиза. Содержится в нормальной сыворотке крови в количестве до 25 мкг/мл. Это сывороточный белок с мол. массой 220 000. Пропердин принимает участие в разрушении микробной клетки, нейтрализации вирусов, лизисе некоторых эритроцитов. Принято считать, что активность проявляется за счет не самого пропердина, а системы пропердина (комплемента и двухвалентных ионов магния). Пропердин нативный играет значительную роль в нсспецифической активации комплемента (альтернативный путь активации комплемента).

    Лизины — белки сыворотки крови, обладающие способностью лизировать некоторые бактерии или эритроциты. В сыворотке крови многих животных содержатся бета-лизины, вызывающие лизис культуры сенной палочки, а также весьма активные в отношении многих патогенных микробов.

    Лактоферрин. Лактоферрин — негиминовый гликопротеид, обладающий железосвязывающей активностью. Связывает два атома трехвалентного железа, конкурируя с микробами, в результате чего рост микробов подавляется. Синтезируется полиморфно-ядерными лейкоцитами и гроздьевидными клетками железистого эпителия. Является специфическим компонентом секрета желез — слюнных, слезных, молочных, дыхательного, пищеварительного и мочеполового трактов. Принято считать, что лактоферрин — фактор местного иммунитета, защищающий от микробов эпителиальные покровы.

    Комплемент. Комплементом называют многокомпонентную систему белков сыворотки крови и других жидкостей организма, которые играют важную роль в поддержании иммунного гомеостаза. Впервые описал Бухнер в 1889 г. под названием «алексин» — термолабильный фактор, в присутствии которого наблюдается лизис микробов. Термин «комплемент» ввел Эрлих в 1895 г. Уже давно было замечено, что специфические антитела в присутствии свежей сыворотки крови способны вызвать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед постановкой реакции прогреть при 56 °С в течение 30 мин, то лизис не произойдет. Оказалось, что гемолиз (лизис) происходит за счет наличия комплемента в свежей сыворотке. Наибольшее количество комплемента имеется в сыворотке крови морских свинок.

    Система комплемента состоит не менее чем из 11 различных белков сыворотки крови, получивших обозначение от С1 до С9. С1 имеет три субъединицы — Clq, Clr, С Is. Активированная форма комплемента обозначается черточкой сверху (С).

    Существует два пути активации (самосборки) системы комплемента — классический и альтернативный, различающиеся пусковыми механизмами.

    При классическом пути активации происходит связывание первого компонента комплемента С1 с иммунными комплексами (антиген + антитело), куда включаются последовательно субкомпоненты (Clq, Clr, Cls), С4, С2 и СЗ. Комплекс С4, С2 и СЗ обеспечивает фиксацию на клеточной мембране активированного С5 компонента комплемента, а затем включается через ряд реакций С6 и С7, которые способствуют фиксации С8 и С9. В результате происходит повреждение клеточной стенки или лизис бактериальной клетки.

    При альтернативном пути активации комплемента активаторами служат непосредственно сами вирусы, бактерии или экзотоксины. В альтернативном пути активации не участвуют компоненты С1, С4 и С2. Активация начинается со стадии СЗ, куда включается группа белков: Р (пропердин), В (проактиватор), D (конвертаза проактиватора СЗ) и ингибиторы J и Н. Пропердин в реакции стабилизирует конвертазы СЗ и С5, поэтому этот путь активации называют также системой пропердина. Реакция начинается с присоединения фактора В к СЗ, в результате ряда последовательных реакций к комплексу (конвертаза СЗ) встраивается Р (пропердин), который воздействует как фермент на СЗ и С5, начинается каскад активации комплемента с С6, С7, С8 и С9, что приводит к повреждению клеточной стенки или лизису клетки.

    Таким образом, для организма система комплемента служит эффективным механизмом защиты, которая активируется в результате иммунных реакций или при непосредственном контакте с микробами или токсинами. Отметим некоторые биологические функции активированных компонентов комплемента: Clq участвует в регуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот; С4, связанный с клеткой, способствует иммунному прикреплению; СЗ и С4 усиливают фагоцитоз; С1/С4, связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку; СЗа и С5а идентичны анафилактосинам, они воздействуют на нейтрофильные гранулоциты, последние выделяют лизосомные ферменты, разрушающие чужеродные антигены, обеспечивают направленную миграцию микрофагов, вызывают сокращение гладких мышц, усиливают воспаление (рис. 13).

    Установлено, что макрофаги синтезируют С1, С2, С4, СЗ и С5. Гепатоциты — СЗ, С6, С8, клетки.

    Интерферон, Выделен в 1957 г. английскими вирусологами А. Айзеке и И. Линденман. Интерферон первоначально рассматривался как фактор противовирусной защиты. В дальнейшем выяснилось, что это группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. Индукторами образования интерферона помимо вирусов являются бактерии, бактериальные токсины, митогены и др. В зависимости от клеточного происхождения интерферона и индуцирующих его синтез факторов различают «-интерферон, или лейкоцитарный, который продуцируется лейкоцитами, обработанными вирусами и другими агентами, интерферон, или фибробластный, который продуцируется фибробластами, обработанными вирусами или другими агентами. Оба эти интерферона отнесены к типу I. Иммунный интерферон, или у-интерферон, продуцируется лимфоцитами и макрофагами, активированными невирусными индукторами.

    Интерферон принимает участие в регуляции различных механизмов иммунного ответа: усиливает цитотоксическое действие сенсибилизированных лимфоцитов и К-клеток, оказывает антипролиферативное и противоопухолевое действие и др. Интерферон обладает видотканевой специфичностью, т. е. более активен в той биологической системе, в которой выработан, защищает клетки от вирусной инфекции лишь в том случае, если взаимодействует на них до контакта с вирусом.

    Процесс взаимодействия интерферона с чувствительными клетками подразделяют на несколько этапов: 1) адсорбция интерферона на клеточных рецепторах; 2) индукция антивирусного состояния; 3) развитие антивирусной резистентности (накопление интерферо-ниндуцированных РНК и белков); 4) выраженная резистентность к вирусному инфицированию. Следовательно, интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в период репликации вирусных нуклеиновых кислот. У интерферона также установлены радиационно-защитные свойства.

    Ингибиторы сыворотки крови. Ингибиторы — неспецифические противовирусные вещества белковой природы, содержащиеся в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыхательного и пищеварительного трактов, в экстрактах органов и тканей. Обладают способностью подавлять активность вирусов вне чувствительной клетки, при нахождении вируса в крови и жидкостях. Ингибиторы подразделяют на термолабильные (теряют свою активность при прогревании сыворотки крови при 60—62 °С в течение 1 ч) и термостабильные (выдерживают нагревание до 100 °С). Ингибиторы обладают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.

    Помимо сывороточных ингибиторов описаны ингибиторы тканей, секретов и экскретов животных. Такие ингибиторы оказались активными в отношении многих вирусов, например, секреторные ингибиторы респираторного тракта обладают антигемагглютинирующей и вируснейтрализующей активностью.

    Бактерицидная активность сыворотки крови (БАС). Свежая сыворотка крови человека и животных обладает выраженными, в основном бактериостатическими, свойствами в отношении многих возбудителей инфекционных болезней. Основными компонентами, подавляющими рост и развитие микроорганизмов, являются нормальные антитела, лизоцим, пропердин, комплемент, монокины, лейкины и другие вещества. Поэтому БАС является интегрированным выражением противомикробных свойств, входящих в состав гуморальных факторов неспецифической защиты. БАС зависит от условий содержания и кормления животных, при плохом содержании и кормлении активность сыворотки значительно снижается.

    Значение стресса. К неспецифическим факторам защиты также относят защитно-адаптационные механизмы, получившие название «стресс», а факторы, вызывающие стресс, Г. Силъе названы стрессорами. По Силье, стресс — особое неспецифическое состояние организма, возникающее в ответ на действие различных повреждающих факторов внешней среды (стрессоров). Кроме патогенных микроорганизмов и их токсинов стрессорами могут быть холод, тепло, голод, ионизирующая радиация и другие агенты, обладающие способностью вызывать ответные реакции организма. Адаптационный синдром может быть общим и местным. Он обусловливается действием гипофизарно-адренокортикальной системы, связанной с гипоталамическим центром. Под влиянием стрессора гипофиз начинает усиленно выделять адренокортикотропный гормон (АКТГ), стимулирующий функции надпочечников, вызывая у них усиленное выделение противовоспалительного гормона типа кортизона, снижающего защитно-воспалительную реакцию. Если действие стрессора слишком сильно или продолжительно, то в процессе адаптации возникает заболевание.

    При интенсификации животноводства количество стрессовых факторов, воздействию которых подвергаются животные, значительно возрастает. Поэтому профилактика стрессовых воздействий, снижающих естественную резистентность организма и обусловливающих заболевания, является одной из важнейших задач ветеринарно-зоотехнической службы.

    Под неспецифическими факторами защиты понимают врожденные внутренние механизмы поддержания постоянства внутренней среды организма, обладающие широким диапазоном противоинфекционного действия. Именно неспецифические механизмы выступают в качестве первого защитного барьера на пути внедрения инфекционного агента.

    Неспецифичесикие механизмы не нуждаются в перестройке, в то время как специфические агенты (антитела, сенсибилизированные лимфоциты появляются спустя несколько дней.

    Важно отметить, что неспецифические факторы защиты действуют против многих патогенных агентов одновременно.

    Проникновение микробов в организм встречает препятствие прежде всего со стороны анатомо-физиологических образований неспецифической защиты (так называемых барьеров), которые развились в процессе эволюции, как приспособления организма к условиям окружающей среды.

    Различают внутренние и внешние защитные механизмы

    К внешним защитным механизмам относят кожу с ее придатками и слизистые оболочки со включенными в них железами. Нарушение этих механизмов облегчает проникновение инфекционных агентов в организм.

    Факторы неспецифической резистентности:

    • физические,
    • химические,
    • иммунные.

    Внутренние защитные механизмы организма включают в себя лимфатические узлы, иммунные элементы различных органов (селезенки, костного мозга, печени и др.), печень, почки, гемато-энцефалический, или ликворный, барьер (мозговые оболочки, сосудистый эндотелий мозга), биохимические и физико-химические свойства тканей


    Кожа и слизистые оболочки эффективно защищают организм человека от патогенов. Необходимое условие проникновения многих возбудителей — микротравмы кожи и слизистых оболочек, либо укусы кровососущих насекомых.

    Кожные покровы снабжены многослойным эпителием. Эта «защита» подкреплена секретами кожных желез и постоянным слущиванием отмерших слоев эпидермиса. Нарушение целостности эпидермиса (например, при травмах или ожогах) — серьезная предпосылка для микробной инвазии, особенно при контактах с инфицированными субстратами (почва, растительные остатки и т.д.). Помимо барьерной роли кожа снабжена мощной системой иммунной защиты (лимфоциты, клетки системы фагоцитов).

    Слизистые оболочки могут иметь специальные анатомические структуры (например, реснички в мерцательном эпителии трахеи). Погруженные в слизь реснички формируют волны однонаправленных колебаний и перемещают слизь с заключенными в ней частицами к выходу их дыхательных путей по поверхности эпителия.

    Кожа

    Кожа непроницаема для большинства микробов. Она покрыта многослойным ороговевающим эпителием, который является механическим препятствием для их проникновения. Постепенное слущивание поверхностного слоя кожи способствует удалению микроорганизмов. Через поврежденную кожу могут легко проникать возбудители инфекций. Кожа обладает также бактерицидными свойствами по отношению ко многим патогенным агентам, например кишечной и брюшнотифозной палочкам.

    Бактерицидность кожи зависит от кислотности пота, а также от состава секрета сальных желез, выделений антисептически действующих продуктов обмена веществ, например некоторых липидов. Молочная и жирные кислоты выделяются с потом, который в связи с этим также обладает определенным бактерицидным действием; кислую реакцию имеет и бронхиальная слизь.

    Большую роль в защитной функции кожи играет ее иннервация: нарушение иннервации нарушает чувствительность, повышает проницаемость кожи и изменяет в ней обмен веществ, вследствие чего и понижается ее сопротивляемость.

    На коже и слизистых живет сапрофитная микрофлора, которая конкурирует с патогенными микроорганизмами.

    На клетках некоторых тканей находятся нормальные иммуноглобулины, которые препятствуют прикреплению возбудителя к эпителиальным клеткам. Так бывает, например, при некоторых инфекциях, для которых входными воротами является кишечник.

    Сохранение целостности кожи и слизистых играет большую защитную роль, так как значительная часть микроорганизмов через не поврежденные покровы не проникает.

    Слизистые оболочки

    Слизистые оболочки имеют множество защитных факторов — от кислых значений pH желудка до секреции ферментов и АТ. Поэтому поддерживать их в хорошем состоянии помогает употребление достаточного количество воды, желательно с добавление , и т.д.

    Слизь. Слизистые оболочки покрыты слоем слизи — гелеобразной гликопротеиновой структур, задерживающей и фиксирующей различные объекты, в том числе микроорганизмы. Слизь гидрофильна; через нее могут диффундировать многие образующиеся в организме вещества, в том числе бактерицидные (например, лизоцим и пероксидазы).

    Лизоцим. В отделяемых слизистых оболочек содержится лизоцим — фермент, лизирующий клеточные стенки бактерий. Лизоцим присутствует и в других жидкостях организма (например, в слезной жидкости).

    Сурфактант. В нижних участках воздухоносных путей и дыхательном отделе легкого слизи нет, но поверхность эпителия покрыта слоем сурфактанта — ПАВ, способного фиксировать и уничтожать патогенов.

    Иммуноглобулины. На поверхность эпителия желудочно-кишечного тракта и респираторного тракта постоянно выделяются молекулы секреторного lg.

    Слизистые оболочки выстилающие конъюктиву, носоглотку, дыхательные, пищеварительные и мочеполовые пути, благодаря своей слабой проницаемости, препятствуют внедрению микробов. Этому способствует и секрет включенных в слизистые оболочки желез, способный механически удалять инородные тела, в том числе и микробов (дыхание, кашель, чиханье).

    Слизистые оболочки дыхательных путей покрыты мерцательным эпителием, реснички которого, благодаря колебаниям в сторону носоглотки, выводят наружу пылинки и микробов. Большое значение имеют также двигательные рефлексы защитного характера — изменение дыхания, кашель и чиханье.

    Отделяемое слизистых оболочек оказывает бактерицидное действие. В слезах, мокроте и слюне содержится лизоцим, который ферментативным путем растворяет некоторые виды возбудителей.

    Бактерицидность слизистых оболочек не исчерпывается только наличием лизоцима. Слизистые оболочки выделяют секреты, обладающие бактерицидными свойствами, в частности за счет иммуноглобулинов.

    Желудочный сок обладает значительным стерилизующим действием, например убивает холерных вибрионов, ослабляет действие дифтерийного токсина.

    Некоторое бактерицидное действие оказывает и кишечный сок. Слизистая оболочка кишечника содержит мукополисахариды, которые угнетают некоторые нейротропные вирусы. Защитная функция слизистой кишечника объясняется также наличием постоянной флоры, например кишечной палочки, которая является антогонистом брюшнотифозной и дизентерийной палочек, стрептококка и стафилококка.

    Палочка Дедерлейна во влагалище препятствует проникновению стрептококков.

    В связи с этим следует отметить бактерицидное действие ряда веществ, содержащихся в соках растений и фильтратах культур некоторых микроорганизмов. Эти вещества, называемые антибиотиками, нашли широкое применение в медицинской практике!

    Барьерная роль слизистых оболочек регулируется деятельностью нервной системы.

    В основе простуды лежит изменение рефлекторной деятельности и в связи с этим повышение проницаемости слизистых оболочек.

    Воспаление

    Воспалительная реакция — это фактор, препятствующий распространению инфекционного агента по организму. Необходимо подчеркнуть, что воспаление представляет собой один из самых мощных механизмов оздоровления в борьбе организма с инфекцией. В зоне воспаления происходит фиксация микробов образовавшимися нитями фибрина.

    В воспалительном процессе кроме свертывающей и фибринолитической систем принимают участие система комплемента, а также эндогенные медиаторы (простагландины, вазоактивные амины и др.).

    Воспаление сопровождается повышением температуры, отеком, покраснением и болезненностью.

    В дальнейшем в освобождении организма от микробов и других чужеродных факторов активное участие принимает фагоцитоз (клеточные факторы защиты).

    Значение воспалительного процесса

    Роль мощного защитного механизма играет воспалительный процесс, вызванный микробами в коже или слизистых оболочках.

    Сосудистые расстройства, увеличение количества лейкоцитов и усиление их фагоцитарной деятельности (поглощение и переваривание микробов) при воспалении препятствуют распространению инфекции. Образовавшийся экссудат удаляет бактерии и токсины.

    Такое освобождение организма от микробов и токсинов особенно заметно в том случае, когда экссудат имеет выход наружу.

    Внутренние защитные механизмы

    1. Лимфатические узлы , обладающие способностью задерживать микробов в ткани фолликулов, а также участвовать в выработке специфического иммунитета.

    2. Иммунные элементы различных органов (селезенки, костного мозга, печени и др.), которые участвуют в задержке микробов и переваривании их.

    3. Печень, в которой происходит задержка микробов и выделение их желчью, а также обезвреживание ряда токсических веществ благодаря образованию парных глюкуроновых и эфирно-серных кислот; цитохром Р450.

    4. Почки, освобождающие организм от токсических веществ и микробов.

    5. Гемато-энцефалический, или ликворный, барьер (мозговые оболочки, сосудистый эндотелий мозга), регулирующий и поддерживающий постоянство химического состава и других свойств внутренней среды мозга.

    6. Биохимические и физико-химические свойства тканей , неблагоприятно влияющие на развитие и жизнедеятельность микроорганизмов, на степень проницаемости клеточных мембран, напряженность и характер тканевого обмена.

    Бактерицидность тканевых экстрактов и сыворотки заметно снижаются в среде, бедной кислородом (помогает ).

    Лимфатические узлы

    В случае, если микроорганизмы преодолевают кожный и слизистые барьеры, то защитную функцию начинают выполнять лимфатические узлы. В них и инфицированном участке ткани развивается воспаление — важнейшая приспособительная реакция, направленная на ограниченное действие повреждающих факторов.

    • Поддерживает работу лимфатической, кровеносной и иммунной систем.
    • Помогает организму поддерживать здоровье сосудов.
    • Способствует выведению шлаков из организма.

    Неспецифические факторы защиты

    К неспецифическим факторам иммунитета относится пропердин, Содержание его в крови — до 0,3%. Он действует в присутствии комплемента и ионов магния (пропердиновая система).

    К неспецифическим бактерицидным веществам сыворотки относятся:

    • нормальные (естественные) антитела, ингибиторы вирусов в сыворотке крови;
    • лизоцим (содержится в слезах, мокроте, слюне);
    • лейкины, выделяющиеся пр распаде лейкоцитов;
    • интерферон — высокомолекулярный белок, образующийся в клетках при воздействии вирусов и подавляющий размножение других вирусов.

    Естественные антитела

    Естественные антитела («антигенезависимые», «неспецифические» антитела) составляют до 7% общего количества иммуноглобулинов в сыворотке крови неиммунизированных людей.

    Их происхождение связывают с ответом иммунной системы на антигены нормальной микрофлоры. В эту же группу входят антитела, длительно циркулирующие после выздоровления от инфекционного заболевания.

    Часть пула подобных антител синтезируется параллельно с образованием специфических антител. Эти антитела низкоспецифичны, но способны перекрестно реагировать с широким спектором антигенов.

    Вызывают агглютинацию (склеивание) микробов, их разрушение (в присутствии комплемента), нейтрализуют вирусы и токсины, стимулируют фагоцитарные реакции (через маркирование возбудителей).

    Ингибиторы сыворотки крови

    Ингибиторы сыворотки крови — неспецифические противовирусные вещества белковой природы, содержащиеся в нормальной нативной сыворотке крови, секретах эпителия слизистых оболочек дыхательного и пищеварительного трактов, в экстрактах органов и тканей. Обладают способностью подавлять активность вирусов при нахождении вируса в крови и жидкостях.

    Ингибиторы обладают универсальной вируснейтрализующей и антигемагглютинирующей активностью в отношении многих вирусов.

    Помимо сывороточных ингибиторов описаны ингибиторы тканей, секретов и экскретов организма. Такие ингибиторы оказались активными в отношении многих вирусов, например, секреторные ингибиторы респираторного тракта обладают вируснейтрализующей активностью.

    Бактерицидная активность сыворотки крови (БАС)

    Сыворотка крови обладает выраженными, в основном бактериостатическими, свойствами в отношении многих возбудителей инфекционных болезней. Поэтому бактерицидная активность сыворотки крови является интегрированным выражением противомикробных свойств, входящих в состав гуморальных факторов неспецифической защиты.

    Бактерицидная активность сыворотки крови зависит от многих условий, но при плохом питании, дефиците физнагрузок и необходимых нутриентов активность сыворотки значительно снижается.

    Естественные киллеры

    Помимо фагоцитирующих клеток, важную роль в быстром реагировании организма на чужеродные антигены играют естественные киллеры (NK -клетки).

    Эту популяцию составляют большие зернистые лимфоциты, элиминирующие:

    • опухолевые клетки;
    • клетки, инфецированные вирусами и бактериями, а также простейшими.

    Интерферон выделен в 1957 г. английскими вирусологами и первоначально рассматривался как фактор противовирусной защиты. В дальнейшем выяснилось, что эта группа белковых веществ, функция которых заключается в обеспечении генетического гомеостаза клетки. Индукторами образования интерферона помимо вирусов являются бактерии, бактериальные токсины, митогены и др.

    В зависимости от клеточного происхождения интерферона и индуцирующих его синтез факторов различают интерферон лейкоцитарный, который продуцируется лейкоцитами, обработанными вирусами и другими агентами и интерферон фибробластный, который продуцируется фибробластами, обработанными вирусами или другими агентами.

    Иммунный интерферон, или у-интерферон, продуцируется лимфоцитами и микрофагами, активированными невирусными индукторами.

    Интерферон принимает участие в регуляции различных механизмов иммунного ответа:

    • усиливает цитотоксическое действие сенсибилизированных лимфоцитов;
    • оказывает антипролиферативное и противоопухолевое действие и др.

    Интерферон обладает видотканевой специфичностью, т.е. более активен в той биологической системе, в которой выработан, защищает клетки от вирусной инфекции лишь в том случае, если взаимодействует на них до контакта с вирусом.

    Процесс взаимодействия интерферона с чувствительными клетками подразделяют на несколько этапов:

    • адсорбция интерферона на клеточных рецепторах;
    • индукция антивирусного состояния;
    • развитие антивирусной резистентности (накопление интерфероно-индуцированных РНК и белков);
    • выраженная резистентность к вирусному инфицированию.

    Интерферон не вступает в прямое взаимодействие с вирусом, а препятствует проникновению вируса и ингибирует синтез вирусных белков на клеточных рибосомах в период репликации вирусных нуклеиновых кислот.

    У интерферона также установлены радиационно-защитные свойства.

    Присутствие микрофлоры является существенной составляющей в функционировании организма человека. Микрофлора играет значительную роль в перистальтике, секреции, всасывании и клеточном составе кишечника.

    Кишечная микрофлора оказывает подавляющее действие на размножение болезнетворных бактерий и таким образом предотвращает патогенные инфекции.

    Бактерии кишечной микрофлоры подавляют или уменьшают прилипания патогенных агентов путем конкурентного исключения. Также бактерии постоянной микрофлоры помогают поддерживать кишечную перистальтику и целостность слизистой кишечника.

    Иммунная система кишечника

    В кишечнике человека сосредоточено более 70% иммунных клеток.

    Главной функцией иммунной системы кишечника является защита от проникновения бактерий в кровь. Вторая функция — устранение болезнетворных бактерий.

    Это обеспечивают два механизма:

    • врожденный (наследуется ребенком от матери, люди с рождения имеют в крови антитела);
    • приобретенный иммунитет (появляется после попадания в кровь чужеродных белков, например, после перенесения инфекционного заболевания).

    При контакте с патогенами происходит стимуляция иммунной защиты организма. Микрофлора кишечника воздействует на специфические скопления лимфоидной ткани. Благодаря этому происходит стимуляция клеточного и гуморального иммунного ответа.

    Клетки иммунной системы кишечника активно вырабатывают иммуноглобулин — белок, который участвует в обеспечении местного иммунитета и является важнейшим маркером иммунного ответа.

    Микрофлора кишечника вырабатывает множество антимикробных веществ.

    Заселение кишечника нормальной микрофлорой создает неблагоприятные условия для размножения условно патогенный и патогенных микробов, поэтому попадая в кишечник здорового человека, патогенные микробы погибают вследствие конкуренции с нормофлорой.

    Состояние микрофлоры кишечника является определяющим фактором функционирования иммунной защиты организма. При дисбиотических нарушениях в кишечнике наблюдается не только избыточный рост патогенных микробов, но и общее снижение иммунной защиты организма.

    Нормальная микрофлора кишечника играет особенно важную роль в жизни организма новорожденных и детей.

    Фагоцитоз

    В тесной связи с воспалением стоит и такой защитный механизм, как фагоцитоз. Фагоциты выполняют не только защитные (поглощают и разрушают чужеродные агенты), но и дренажные функции (удаляют погибшие и деградировавшие структуры организма).

    Фагоцитоз — не только реакция клеток на внедрение патогенных микробов — это более общая по сущности биологическая реакция клеточных элементов, которая отмечается как при патологических, так и при физиологических состояниях.

    Фагоцитоз, при котором происходит гибель фагоцитированного микроба, называют завершенным (совершенным). Однако в ряде случаев микробы, находящиеся внутри фагоцитов, не погибают, а иногда даже размножаются (например, возбудитель туберкулеза, сибиреязвенная бацилла, некоторые вирусы и грибы). Такой фагоцитоз называют незавершенным (несовршенным).

    Важно знать, что в не укрепленном питательными веществами организм чаще происходит фагоцитоз незавершенный. Даже дефицит цинка в организме может привести фагоцитоз к незавершенному.

    Макрофаги кроме фагоцитоза выполняют регулярные и эффекторные функции, взаимодействуя с лимфоцитами в ходе специфического иммунного ответа.

    Физико-химические факторы защиты

    Механические барьерные свойства кожи дополняются секретами кожных желез; последние проявляют прямую бактерицидную активность, либо снижают pH кожи до неблагоприятных значений для патогенов за счет секреции кислот (уксусной, молочной и др.).

    Система комплемента

    Комлементом называют многокомпонентную систему белков сыворотки крови и других жидкостей организма, которые играют важную роль в поддержании иммунного гомеостаза.

    Уже давно было замечено, что специфические антитела свежей сыворотки крови способны вызвать гемолиз эритроцитов или лизис бактериальной клетки, но если сыворотку перед постановкой реакции прогреть при 56º С в течение 30 мин., то лизис не произойдет.

    Оказалось, что гемолиз (лизис) происходит за счет наличия комлемента в свежей сыворотке.

    Система комлемента — группа по меньшей мере 26 сывороточных белков. Компоненты комлемента участвуют в свертывании крови, способствует межклеточным взаимодействиям, необходимым для процессинга антигенов, вызывают лизинг бактерий и клеток, инфицированных вирусами.

    В норме компоненты находятся в неактивной форме.

    Основные функции компонентов комлемента в защитных реакциях:

    • стимуляция фагоцитоза;
    • нарушение целостности клеточных стенок микроорганизмов мембраноповреждяющим комплексом (особенно у видов, устойчивых к фагоцитозу, например гоннококков).
    • индукция синтеза медиаторов воспалительного ответа.

    Система комплемента стимулирует воспалительные реакции, участвует в развитии иммунных (через активацию макрофагов) и анафилактических реакций.

    Для организма система комплимента служит эффективным механизмом защиты, которая активируется в результате иммунных реакций или при непосредственном контакте с микробами или токсинами.

    Биологические функции активированных компонентов комплемента:

    • участвуют в регуляции процесса переключения иммунологических реакций с клеточных на гуморальные и наоборот;
    • связанный с микробной клеткой, способствуют иммунному прикреплению;
    • усиливают фагоцитоз;
    • связываясь с поверхностью вируса, блокируют рецепторы, ответственные за внедрение вируса в клетку;
    • воздействуют на нейтрофильные гранулоциты, которые выделяют лизосомные ферменты, разрушающие чужеродные антигены;
    • обеспечивают направленную миграцию микрофагов;
    • вызывают сокращение гладких мышц;
    • усиливают воспаление.

    Белковая продукция компании НСП:

    • Обладает выраженным иммуностимулирующим действием
    • Оказывает иммунорегулирующее действие при аутоиммунных заболеваниях и аллергических состояниях
    • Повышает устойчивость организма к простудным и инфекционным заболеваниям
    • Обладает онкопротективным действием
    • Оказывает омолаживающее действие на организм в целом
    • Предупреждает послеоперационные осложнения и стимулирует процессы регенерации тканей

    Секреты пищеварительного тракта

    Секреты пищеварительного тракта наряду со своими специальными свойствами обладают способностью обезвреживать многие патогенные микробы.

    Слюна — первый секрет, обрабатывающий пищевые вещества, а также микрофлору, поступающую в ротовую полость. Кроме лизоцима слюна содержит ферменты (амилазу, фосфатазу и др.)

    Желудочный сок также губительно действует на многие патогенные микробы (выживают возбудители туберкулеза, сибиреязвенная бацилла).

    К неспецифическим факторам защиты также относят защитно-адаптационные механизмы, получившие название «стресс», а факторы, вызывающие стресс названы стрессорами.

    Стресс — особое неспецифическое состояние организма, возникающее в ответ на действие различных повреждающих факторов внешней среды (стрессоров).

    Кроме микроорганизмов и их токсинов стрессорами могут быть холод, тепло, голод, ионизирующая радиация и другие агенты, обладающие способностью вызвать ответные реакции организма.

    Под влиянием стрессора гипофиз начинает усиленно адренокортикотропный гормон (АКТГ), стимулирующий функции надпочечников, вызывая у них усиленное выделение гормона типа картизона, снижающего защитно-воспалительную реакцию при длительном воздействии. Если действие стрессора слишком сильно или (и) продолжительно, то возникает истощение защитных сил организма .

    Количество стрессовых факторов, воздействию которых подвергаются современный человек, значительно возрастает. Поэтому профилактика стрессовых воздействий, снижающих естественную резистентность организма и обусловливающих заболевания, является одной из важнейших задач нутрициологии.

    Набор «Антистресс» создан с целью помочь укрепить нервную систему, улучшить эмоциональное состояние и защитить организм от негативного воздействия дистресса.

    Система сурфактанта

    Сурфактант — смесь поверхностно — активных веществ, выстилающая легочные альвеолы изнутри (то есть находящаяся на границе воздух-жидкость). Препятствует слипанию стенок альвеол при дыхании за счет снижения поверхностного натяжения пленки тканевой жидкости, покрывающей альвеолярный эпителий.

    Сурфактант также имеет защитное действие. Высокие поверхностно-активные свойства сурфактанта объясняются присутствием в нем разных форм фосфатидилхолина, который начинает синтезироваться в легких доношенного плода непосредственно перед родами.

    Система сурфактанта может повреждаться и у взрослых при травмах, в том числе химических и термических, а также при некоторых заболеваниях.

    Сурфактант помогает легким всасывать и усваивать кислород.

    В последнее время мода на безжировое питание приводит к возникновению гипоксий (кислородного голодания) у людей, которые не употребляют в пищу качественные жиры, так как сурфактант примерно на 90% состоит из жиров: 85% — фосфолипиды, 5% — нетральные жиры, 10% — белки.

    Продукты НСП для укрепления организма

    • Лецитин входит в состав клеточных мембран, является мембранопротектором.
    • Обеспечивает устойчивую работу ЦНС.
    • Лецитин также снижает ожирение печени, является гепатопротектором.
    • Улучшает функционирование мозга.
    • Нормализует уровень холестерина и жирных кислот в крови.
    • Стимулирует усвоение витаминов А, D, E и К в кишечном тракте.

    1 капсула содержит: соевый лецитин — 560 мг.

    • Супер Комплекс содержит набор витаминов, минералов, микроэлементов, необходимых для поддержки защитной системы и нормального функционирования всего организма

    • Является источником витаминов и биоэлементов.
    • Укрепляет иммунную систему.
    • Способствует профилактике инфекционных заболеваний.
    • Повышает работоспособность.
    • Обладает антиоксидантным действием.
    • Ускоряет выздоровление при бактериальных и вирусных заболеваниях.
    • Обеспечивает выработку энергии на клеточном уровне, участвуя в синтезе аденозинтрифосфорной кислоты (АТФ).

    • Омега-3 ПНЖК НСП регулирует жировой обмен и содержание холестерина в крови.
    • Входит в состав мембран клеток мозга и сетчатки глаза.
    • Благотворно влияет на иммунную, нервную и сердечно-сосудистую системы.
    • Обеспечивает выработку противовоспалительных простагландинов.
    • Омега-3 также снижает агрегацию тромбоцитов.

    • Поддерживает и стимулирует кровеносную систему.
    • Люцерна НСП снижает уровень холестерина в крови, предупреждает развитие атеросклероза.
    • Улучшает состояние больных сахарным диабетом.
    • Люцерна НСП снижает выраженность воспаления.
    • Участвует в профилактике и лечении воспалительных заболеваний мочеполовой системы.

    В ходе эволюции у человека возникли многочисленные механизмы защиты от патогенных микроорганизмов. Одни из них появляются только у тех, кто подвергался предварительному воздействию болезнетворного микроба или продуктов его жизнедеятельности, другие имеются и у людей, непосредственно не испытывавших такого воздействия. В качестве последних могут быть такие явления, как фагоцитоз (фагоциты - клетки, поглощающие и переваривающие посторонние для организма частицы), наличие антимикробных веществ в тканях и циркулирующих жидкостях - лизоцима, лизина, комплемента, интерферона и др., а также определенная последовательность реакций, называемая воспалением.

    Не будучи приспособленными к борьбе с определенными патогенными микроорганизмами, указанные механизмы защиты тем не менее представляют один из наиболее успешно действующих «защитных кордонов» против инфекции. Если организм еще не выработал антитела, способные циркулировать в крови, или в защитных механизмах не «запрограммирована» борьба с данным видом микроорганизма, указанные факторы являются единственным барьером на его пути. Так как подобные факторы не обладают узкой специализацией в борьбе против того или иного возбудителя инфекции, их относят к факторам неспецифической резистентности.

    Известно, что неповрежденная кожа сама по себе представляет барьер, а кислотность пота и присутствие жирных кислот в секрете сальных желез препятствуют размножению микробов. Кислая реакция загрязненной кожи утрачивается или снижается, и это способствует размножению микробов.

    Слезы и слюна обеспечивают очень важный, чисто механический эффект - смывание. Но, кроме того, они содержат белковое вещество лизоцим, обладающий антибактериальным свойством.

    Очень много лизоцима в слюне собак, с чем и связано быстрое заживление ран у них после зализывания.

    Верхние дыхательные пути содержат секреты, в которых присутствуют лизоцим и антитела. Кроме того, реснички, выстилающие дыхательные пути, удаляют слой слизи вверх по направлению к трахее, а ее накопление в избытке стимулирует кашель - толчкообразные выдыхательные движения. Таким образом, бактерии и другие чужеродные вещества выталкиваются из бронхов вверх по направлению ко рту, где они выплевываются или заглатываются.

    В желудке защитным фактором является соляная кислота, дополняющая механическую способность желудка изгонять нежелательный продукт с помощью рвотных движений.

    Кишечник обладает сходным свойством изгонять свое содержимое в противоположном направлении. Кроме того, микробы, постоянно его населяющие (постоянная флора), вырабатывают антибиотикоподобные вещества колицины, препятствующие накоплению болезнетворных микробов.

    Защита мочевого тракта достигается прежде всего промыванием его мочой. У женщин влагалище защищено от инфекции бактериями, выделяющими молочную кислоту, которая препятствует размножению большинства патогенных микроорганизмов.

    Более вирулентным микроорганизмам удается «пробиться» через эти перечисленные барьеры, проникнуть сквозь кожу и слизистую оболочку. В этом случае защитную функцию в тканях начинают выполнять фагоцитоз и воспаление.

    Фагоциты, макрофаги и другие лейкоциты (белые клетки крови) обнаруживаются как в крови, так и в тканях. К ним относятся клетки 2 типов: моноциты и гранулоциты. Свое название гранулоциты получили в связи с тем, что в их цитоплазме имеются гранулы. Последние обладают способностью окрашиваться, поэтому гранулоциты подразделяют на эозинофилы (гранулы окрашивает кислый краситель - эозин), базофилы (основной краситель - метиленовый синий) и нейтрофилы (смесь кислого и основного красителей). Все зернистые лейкоциты способны к фагоцитозу, но нейтрофилы более активны и играют ведущую роль в защитных механизмах хозяина.

    Когда в ткани попадает возбудитель инфекции, в ней выделяются вещества, привлекающие нейтрофилы и моноциты к месту повреждения (хемотаксис). Во время этого процесса моноциты увеличиваются в размере и превращаются в клетки, называемые макрофагами и обладающие повышенной фагоцитарной активностью. Макрофаги встречаются также в виде покоящихся клеток в некоторых органах (печени, селезенке, костном мозге и лимфатических узлах). Они играют в этих органах большей частью роль эндотелиальных (выстилающих полость) клеток. Макрофагально-эндотелиальная система представляет собой «линию обороны» организма, где активно уничтожаются микроорганизмы, «прорвавшие» внешние барьеры.

    Процесс фагоцитоза состоит из 2 этапов. На первом этапе микроорганизмы прикрепляются к мембране макрофага, что приводит к их поглощению: со всех сторон к микроорганизмам из клетки вытягиваются и сливаются друг с другом псевдоподии (выпячивание протоплазмы). Микроорганизмы оказываются в конце концов заключенными в вакуоль, ограниченную мембраной. Образовавшаяся внутри фагоцита вакуоль сливается с лизосомами (вакуоль, содержащая различные ферменты). Заключенная в вакуоль бактерия переваривается под воздействием сложной смеси веществ, которые высвобождаются из лизосом. К ним относятся некоторые бактерицидные вещества: 2 фермента - лизоцим и миелопероксидаза. Макромолекулярные компоненты убитых бактериальных клеток перевариваются множеством лизосомных гидролаз в кислой среде. Среди этих ферментов особо важную роль играет, видимо, миелопероксидаза. Фагоциты с дефектной миелопероксидазной системой менее эффективно разрушают поглощенные микробы, а организм, наделенный таким дефектом, весьма чувствителен к инфекционным заболеваниям.

    Вирулентность многих патогенных микроорганизмов обусловлена их устойчивостью к фагоцитозу или внутриклеточному разрушению. В некоторых случаях эта устойчивость связана с тем, что микроорганизмы выделяют вещества, блокирующие процесс фагоцитоза, а именно одни из них подавляют реакцию хемотаксиса фагоцитов крови, другие (в частности, их капсула) препятствуют прикреплению и поглощению бактериальных клеток, третьи подавляют внутриклеточное переваривание поглощенных фагоцитом клеток, четвертые губительно действуют на фагоциты. Эти вещества вместе с другими бактериальными продуктами способствуют распространению болезнетворных микробов в организме.

    Если ткань человека подвергается действию того или иного раздражителя, в ней возникает воспаление. Характерные признаки воспаления - краснота, отек, повышение температуры, боль. Причины повышения температуры и появление боли не совсем ясны, а покраснение и отек объясняются расширением кровеносных сосудов (капилляров), что приводит к увеличению тока крови через этот участок и, следовательно, к покраснению. Кроме того, проницаемость стенок капилляров повышается, растворимые белки выходят из сосудов, что вызывает движение жидкости в ткани и, следовательно, отек. Воспаление бывает обусловлено самыми разнообразными раздражителями (температурный фактор, механическое повреждение, проникновение микроорганизмов и т. д.). Симптомы воспаления возникают под воздействием веществ, которые выделяются из поврежденных клеток или активируются в жидкостях организма. Из множества различных соединений, выделенных из клеток или из сыворотки и вызывающих в эксперименте воспаление, наиболее изучены гистамин и серотонин. Эти вещества присутствуют в слабосвязанном состоянии в тромбоцитах, а также в клетках многих тканей, откуда они высвобождаются под действием различных раздражителей. По мере развития воспалительной реакции происходят резкие изменения в поведении гранулоцитов. Сначала они прикрепляются к внутренним стенкам капилляров, а затем прокладывают себе путь между клетками стенки сосуда, выходя в ткани, причем весь этот процесс может занимать всего 2 минуты.

    Если причиной воспаления является бактериальная инфекция, то гранулоциты движутся к очагу инфекции, реагируя на вещества, выделяемые бактериями (хемотаксис). По мере развития воспаления фагоциты выделяют лизосомные ферменты, повреждающие и в конце концов разрушающие близлежащие клетки ткани.

    На поздних стадиях воспаления гранулоциты, скопившиеся в очаге воспаления, замещаются моноцитами. Лимфоциты - клетки, образующие антитела,- также покидают кровяное русло и скапливаются в месте повреждения.

    Каким же образом воспаление (явление само по себе патологическое) может выступать в роли защитного механизма? Во-первых, ткани на месте Заражения обогащаются фагоцитами. Во-вторых, увеличивается доступ плазмы к тканям, и, таким образом, возрастает местная концентрация бактерицидных факторов сыворотки и антител. В-третьих, развитие воспаления приводит к накоплению мертвых клеток хозяина, из которых выделяются бактерицидные тканевые вещества. В центре участка некроза парциальное давление кислорода снижено и происходит накопление молочной кислоты. Эти условия неблагоприятны для роста многих патогенных бактерий. Наконец, повышенная температура, характерная для лихорадочного состояния, замедляет размножение некоторых вирусов и бактерий.

    Бактерицидными свойствами обладает и сама сыворотка крови, содержащая лизоцим, лизин, комплемент и другие биологически активные вещества.

    Лизоцим присутствует не только в секретах слизистых оболочек, сыворотке крови, но и в лейкоцитах, биологических жидкостях (молоко и др.). Это вещество растворяет сапрофитную флору. Оно оказывает активное влияние и на ряд патогенных микробов. Так, слезы действуют литически на некоторые микробы даже в концентрации 1:10 000 000. Этот фермент расщепляет вещества, входящие в состав стенки бактерии. Снижение титров лизоцима ведет к угнетению переваривающей способности фагоцитов. Лизоцим участвует в аллергических реакциях. Спинномозговая жидкость в норме лизоцима не содержит, но при менингите он в ней появляется.

    Лизин - биологически активное, гормоноподобное вещество, губительно действующее на грамположительную микрофлору, - содержится не только в сыворотке крови, но также в передней камере глаза и слюне. Наименьшее количество его обнаружено у новорожденного. К 1-му году жизни уровень лизина возрастает вдвое, оставаясь таким же до 3 лет, затем снижается и держится стойко до 30 лет, а затем плавно нарастает к 75 годам (в 2 раза выше, чем в 30 лет). Содержание лизина возрастает по сравнению с нормой при ревматизме, хроническом тонзиллите, заболеваниях среднего уха, ожогах, обморожениях, травмах, в том числе психических, инфекциях, у беременных при угрожающем самопроизвольном выкидыше, при физической нагрузке и других состояниях. У хирургических больных повышение уровня лизина определяется за 2 недели до появления гнойных осложнений. Повышение уровня лизина в организме - это «сигнал тревоги».

    Для человека свойственны колебания уровня лизина в зависимости от сезона года. Так, весной его содержится больше, чем в зимнее время. Лизин накапливается в тромбоцитах. Он имеется в задней доле гипофиза, зобной, щитовидной железе и костном мозге.

    К неспецифическим факторам защиты относятся и такие белковые вещества, как комплемент (объединяющий 11 различных белковых веществ), пропердин или фактор Р, обеспечивающие наряду с другими веществами бактерицидные свойства сыворотки крови. Эти неспецифические компоненты сыворотки необходимы в таких специфических реакциях, как лизис бактерий, когда пропердин или комплемент, связываясь с антителами и бактериальной клеткой, делают этот комплекс чувствительным к фагоцитозу с последующим разрушением бактериальной клетки. Эти вещества участвуют и в воспалительных реакциях.

    При попадании вируса в клетки организма в тканевой жидкости в этом месте накапливаются вещества белковой природы - интерфероны. Это целая группа веществ, оказывающих сходное биологическое действие (хотя каждое из них и обладает несколько различающимися физико-химическими свойствами). Термин «интерферон» введен как обобщающее название для всей группы этих веществ. В месте внедрения вируса интерфероны концентрируются из-за повышенной проницаемости капилляров при воспалительной реакции. Они могут появиться и вблизи пораженного участка, но лишь после первых циклов размножения вируса. Повышение общей или местной температуры тела благотворно действует на клетки, вырабатывающие интерферон (усиливают их продукцию).

    Интерферон, образующийся в клетках, зараженных вирусом, действует и на соседние, еще здоровые клетки и ограничивает распространение вируса.

    Механизм действия интерферона не зависит от ферментов и белков, специфических для определенного вируса. Интерферон синтезируется и выделяется клетками вскоре после их первого контакта с вирусом. Инфицированные клетки способны выделять интерферон на протяжении относительно долгого времени.

    Клетки продуцируют интерферон и при действии некоторых токсичных веществ, выделяемых бактериями (особенно проникающими внутрь клеток), при контакте с отдельными веществами растительного происхождения, а также с различными синтетическими соединениями. Таким образом, интерферон, выделяемый клеткой под действием различных веществ, является продуктом ее метаболизма.

    У большинства детей до 1 года и у лиц старше 60 лет установлены неспособность или пониженная способность к образованию интерферона, и, следовательно, восприимчивость к вирусным инфекциям у них повышена. У детей, находящихся на искусственном вскармливании, интерферона вырабатывается меньше, чем у детей, вскармливаемых естественным образом. Снижают интерферо-нообразование также охлаждение, облучение, большие дозы витамина А, стероидные гормоны и потребление алкоголя.

    Большинство вирусов не в состоянии вызвать инфекцию в тех клетках, где образовался интерферон, Независимо от того, чем вызвано его возникновение. Интерферон, попадающий в клетки извне, свободно распространяющийся между клетками или разносимый кровью в различные части организма, удаленные от его первичного источника, также препятствует развитию вирусной инфекции. Интерферон не действует непосредственно на вирус, а проникает через клеточную мембрану и затем путем сложных биохимических процессов стимулирует образование особого комплекса противовирусных белков, которые препятствуют размножению вируса в клетке на молекулярном уровне. Действие интерферона проявляется в основном при его попадании в здоровые клетки, и, таким образом, он считается веществом, обладающим профилактическим свойством.

    Интерферон оказывает не только противовирусное действие, но и влияние на процессы обмена веществ, на размножение клеток и даже в какой-то степени управляет явлениями иммунного ответа организма.

    Перечисленные данные неспецифической резистентности не охватывают полный их комплекс, но они являются основными и указывают на сложную структуру защитных факторов уже на первом этапе встречи организма человека с микроорганизмами.