Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Как появился антибиотик. История развития антибиотиков

    Как появился антибиотик. История развития антибиотиков

    ГБОУ города Москвы Гимназия №1505

    «Московская городская педагогическая гимназия-лаборатория»

    Реферат
    Устойчивость бактерий к антибиотикам

    Алексеенок Мария

    Руководитель: Ноздрачева А. Н.

    Глава 1. Антибиотики ………………..……………………………….…………………11

    1. Что такое антибиотики? ……………..……………………………….….………4
    2. История создания антибиотиков …..……………………………….……………4
    3. Как антибиотики воздействуют на бактерии? ..………………….……………4
    4. Почему антибиотик не убивает клетки хозяйского организма? …..…………..5
    5. Возникновение устойчивости бактерий к антибиотикам ……………….……5

    ……………………6

    Глава 3.Горизонтальный перенос генов ………………….………………………….8

    Глава 4.Биопленки ………………………..………………..……………………….…..9

    Заключение ………………………………………………………………………………..10

    Список литературы ………………………………….…………………………………..10
    Введение

    В наше время в медицине широко используются антибиотики. Но в процессе их использования, обнаружилось возникновение устойчивости к антибиотикам у бактерий. И чем дольше человечество лечится антибиотиками, тем быстрее бактерии приспосабливаются к новым препаратам, так как отбираются не только сами гены устойчивости, но и механизмы их быстрого приобретения патогенными бактериями. Наука начала исследовать причины данного явления и выявила несколько механизмов устойчивости бактерий к антибиотикам.

    Эта тема рассмотрена многими учеными, и потому написана научным языком. Меня проблема устойчивости заинтересовала по двум причинам. Во-первых, у меня заболел дедушка, и в процессе его лечения возникла проблема, так как бактерии-возбудители его болезни оказались устойчивыми практически ко всем антибиотикам. Также моя мама занимается изучением этой проблемы, и мне стало интересно разобраться в этой теме. Я поняла, что эта проблема действительно важна для всех. Поэтому я решила написать про устойчивость бактерий к антибиотикам понятным для школьников языком.

    Целью моего реферата, является изучение и изложение понятным для школьников языком механизмов устойчивости бактерий к антибиотикам.

    Мной были поставлены следующие задачи:

    1. Дать определение антибиотикам

    2. Рассказать, кто и когда открыл антибиотики.

    3. Описать механизм действия антибиотиков на бактерии.

    4. Ответить на вопрос: «Почему антибиотик не убивает эукариотические клетки?»

    5. Описать механизмы устойчивости бактерий к антибиотикам.

    6. Рассказать, что такое биопленки и горизонтальный перенос генов, и какую роль они играют в устойчивости бактерий к антибиотикам.

    Структура работы: реферат состоит из введения, глав с теоретическим обзором, заключения и источников.

    Глава 1. Антибиотики

    1.1 Что такое антибиотики?

    Изначально антибиотики определялись как органические вещества природного или полусинтетического происхождения, способные убивать бактерии или замедлять их рост. В последнее время врачи и ученые перестали разделять понятия антибиотики и химиопрепараты (антибиотики полностью синтетического происхождения) .

    1.2 История создания антибиотиков

    Еще с древних времен люди использовали плесень для обеззараживания ран. Но первый антибиотик (пенициллин) был открыт в 1928 году Александром Флемингом. Пенициллин для лечебного применения разработали ученые Флори и Чейн .

    После открытия пенициллина ученые открыли множество других антибиотиков, таких как: актиномицин, неомицин, стрептотрицин, бацитрацин, полимиксин, виомицин, хлорамфеникол. Учеными были разработаны химические модификации природных антибиотиков, обладающие лучшими лечебными свойствами. Они были менее токсичны, дольше не разрушались в организме человека, лучше проникали в органы и ткани, были способны подавлять больше видов бактерий .
    1.3. Как антибиотики воздействуют на бактерии?

    Антибиотик необратимо связывается с мишенью (ферментами, участвующими в синтезе ДНК, РНК, белков и клеточной стенки), что приводит к остановке ключевой (жизненно важной) реакции. В результате этого, бактерия гибнет или перестает делиться (рис.1) .

    Рисунок 1. Механизм действия антибиотиков на бактерии.

    1.4. Почему антибиотик не убивает клетки хозяйского организма?

    Поскольку структура эукариотических белков, отвечающих за ключевые биохимические реакции в клетке, отличается от прокариотических, то антибиотики, действующие на бактерии, не токсичны для эукариотов. Самой безопасной группой антибиотиков являются пенициллины, так как они нарушают образование пептидогликана, входящего в состав клеточной стенки бактерий. А у эукариот пептидогликан не образуется .

    1.5. Возникновение устойчивости бактерий к антибиотикам

    Создание первых антибиотиков помогло человечеству справиться со многими смертельными заболеваниями. Например, с туберкулезом, воспалением легких, различных стафилококковых инфекций и многих других. Однако, чуть более чем через 10 лет после начала применения первых антибиотиков выяснилось, что у бактерий возникает к ним устойчивость. Кроме этого в последние годы ученые обнаружили, что теперь к новым антибиотикам устойчивость возникает быстрее, чем раньше. Многолетние научные исследования всех проблем, связанных с возникновением устойчивости у бактерий, выявили три основные причины этого явления. Первая – горизонтальный перенос генов

    устойчивости, вторая – возникновение спонтанных мутаций и третья – образование бактериями биопленок.

    А теперь детально остановимся на основных механизмах и путях возникновения устойчивости к антибиотикам.

    Глава 2. Механизмы устойчивости бактерий к антибиотикам
    Рисунок 2. Биохимические механизмы лекарственной устойчивости. Составлено на основании схемы, приведенной в статье С. З. Миндлин, М.А. Петрова, И. А. Басс, Ж. М. Горленко. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика.

    2006. Т. 42. №11. С. 1495.
    Различные биохимические механизмы приводят к устойчивости бактерий к антибиотикам (рис. 2) .

    Выделяют следующие механизмы:

    1. Снижение проницаемости мембраны.
    2. Активный вынос антибиотика из клетки.
    3. Инактивация антибиотика.
    4. Модификация антибиотика.
    5. Модификация молекулы-мишени.

    Известны также и другие более редкие механизмы устойчивости.

    Первый механизм заключается в снижении проницаемости клеточной мембраны за счет изменения ее химического состава.

    Если же антибиотик проник в бактерию, то он может либо активно выносится из клетки, либо инактивироваться. Активный транспорт антибиотика из клетки происходит благодаря работе специализированных белков, которые образуют трансмембранные помпы, транспортирующие антибиотики. Инактивация происходит за счет того, что бактерия образует специальные ферменты, которые изменяют химическую структуру антибиотика, в результате чего он теряет свою антибактериальную активность. Изменения химической структуры могут происходить путем деградации или модификации антибиотика. Деградация – процесс разрушения молекулы антибиотика, например за счет гидролиза. Модификация – процесс изменения структуры молекулы антибиотика, например за счет присоединения дополнительных функциональных химических групп.Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства .

    Другим механизмом является модификация молекулы-мишени бактерии, в результате чего нарушается связывание антибиотика и мишени. Мишень – это молекула, с которой связывается антибиотик и нарушает ее функции, что в результате убивает бактерию. Чаще всего мишенями служат ДНК-полимераза, РНК-полимераза, рибосома. А для ß-лактамаз мишенью является дипептид, из которого формируется клеточная стенка. Модификация мишени происходит за счет возникновения спонтанных генных мутаций или наличия специальных генов. Устойчивость к рифампицину — яркий пример устойчивости, возникшей за счет генной мутации. Рифампицин связывается с одним из белков (бэта-субъединицей), входящим в состав РНК-полимеразы, в результате чего происходит инактивация всего фермента. Устойчивость к рифампицину возникает в результате мутаций в гене, кодирующем бэта субъединицу. Это происходит за счет трансверсии последовательности AT в TA. В результате в белке бэта-субъединицы аспарагиновая кислота заменяется на валин. В результате этого рифампицин уже не способен связываться с таким измененным ферментом. Относительно высокая частота возникновения мутаций в гене бэта-субъединицы РНК-полимеразы приводит к быстрому отбору устойчивых мутантов, что в значительной степени ограничивает использование этого антибиотика против чувствительных бактерий .

    Из более редких механизмов известно образование метаболического шунта – замены одной цепи реакций на другую. Например, этот механизм используется бактериями энтерококков для устойчивости к ванкомицину.

    Этот антибиотик необратимо связывается с дипептидом D-Ala-D-Ala, входящего в состав молекулы-предшественника, из которой формируется клеточная стенка. В результате такой связи клеточная стенка не может образовываться, и бактерия всегда погибает. Ученые думали, что устойчивости к такому антибиотику не возникнет, но через 30 лет она появилась. У устойчивых штаммов обнаружили вместо дипептида D-Ala-D-Ala другой – D-Ala-D-Lac, с которым антибиотик не связывается. У устойчивых бактерий обнаруживают семь дополнительных генов, полученных путем горизонтального переноса. Именно эти гены участвуют в синтезе альтернативного предшественника клеточной стенки. Причем только после попадания в клетку антибиотика .

    Существует и такой интересный механизм устойчивости как имитация молекулы-мишени. В ходе исследований у бактерий Mycobacterium smegmatis и Mycobacterium bovis обнаружили белок, который сворачивается в третичную структуру, очень похожую на структуру двойной спирали ДНК. Этот белок состоит из 5 аминокислот, свернутых в правозакрученную спираль точно такой же ширины, с таким же зарядом и спектром поглощения света как у молекулы ДНК. Антибиотик (из группы фторхинолонов), проникший в клетку, связывается с белком, а не с ДНК. В результате антибиотик не влияет на синтез ДНК .

    Одна бактериальная клетка может обладать одновременно несколькими различными механизмами устойчивости к одному антибиотику .

    Устойчивость бактерий к антибиотикам бывает врожденной и приобретенной. Врожденная устойчивость может быть обусловлена особенностью строения внешних структур или способностью данного вида или рода бактерий выделять вещество, инактивирующее антибиотик. А приобретенная устойчивость возникает при передаче генов путем горизонтального переноса генов, либо за счет возникновения спонтанной мутации. Все механизмы, которыми обладает бактерия передаются по наследству, так как они кодируются на ДНК .

    Глава 3. Горизонтальный перенос генов

    Горизонтальный перенос генов (ГПГ) – это процесс передачи генетической информации организму, не являющемуся потомком. Для ГПГ необходимо участие как минимум двух независимых процессов: физического переноса ДНК и встраиванию перенесенной ДНК в реципиентный геном, благодаря чему происходит стабильное наследование приобретенных таким путем признаков .

    Главную роль в ГПГ играют разные мобильные генетические элементы: плазмиды, транспозоны, IS-элементы и другие.

    Плазмиды – внехромосомные генетические элементы, в виде замкнутой или линейной молекулы ДНК, способные долго автономно существовать в клетке. Плазмиды осуществляют физический перенос генов между клетками разных бактерий. Также они являются платформой, на которой происходит постоянный обмен генетическим материалом за счет различных систем рекомбинации. Рекомбинация – процесс обмена похожими участками ДНК.

    Транспозон – последовательность ДНК, способная перемещаться внутри генома. Транспозоны содержат гены транспозиции и дополнительные гены и ограничены специальными прямыми или инвертированными концевыми повторами.

    IS-элементы схожи с транспозонами, но они кодируют только белки, участвующие в процессе транспозиции. Также они могут являться частью сложных транспозонов.

    Из-за массового неконтролируемого употребления антибиотиков и плохой экологии, произошло снижение природных барьеров, ограничивающих возможность ГПГ у бактерий. Это привело к тому, что гены устойчивости к антибиотикам.

    стали передаваться с большей частотой, чем раньше.

    Глава 4. Биопленки

    Устойчивость к антибиотикам может также возникать благодаря формированию бактериями биопленок. Биопленки – надклеточная система, состоящая из бактериального сообщества, имеющая пленочную структуру . Биопленки способны выживать при максимальных терапевтических дозировках антибиотиков. Биопленки могут проявлять устойчивость к нескольким антибиотикам. Это происходит по следующим причинам.

    1. Существование в биопленках особых персистирующих форм бактерий или персистеров. Персистер – это особая форма клетки, в которой не происходят биохимические реакции. Таким образом, антибиотик не воздействует на клетку, потому что в ней не происходят реакции, а антибиотик воздействует на функционирующие клетки. Через некоторое время клетка выходит из такого состояния и начинает функционировать.
    2. Фильтрационная способность матрикса. Из-за того, что матрикс бактериальных биоплёнок состоит из различных биополимеров – полисахаридов, белков и даже ДНК, матрикс не только связывает клетки в единую структуру, но и заполняет межклеточные пространства, что позволяет биопленке выводить антибиотики.
    3. Популяции бактерий, составляющие биопленку, также могут обладать разными вышеупомянутыми защитными механизмами, дополняющими друг друга.

    Таким образом, образование бактериальных биопленок, делает бактерии более устойчивыми к антибиотикам, чем свободноживущие клетки .
    Заключение

    Развитие и распространение множественной устойчивости к антибиотикам среди болезнетворных бактерий уже сейчас создает серьезные проблемы при лечении инфекций человека и животных. Кроме того существует реальная опасность того, что в дальнейшем лечение антибиотиками вообще станет неэффективным. Поэтому нужны новые механизмы борьбы с болезнетворными бактериями. В данный момент учеными разрабатываются новые стратегии для борьбы с бактериальными заболеваниями. Но сейчас основной задачей человечества является прекращение бесконтрольного использования антибиотиков. Другими словами не следует использовать антибиотики без серьезной угрозы здоровью.

    В данной работе цели и задачи мной были достигнуты.
    Список литературы:

    1. Миндлин С.З., Петрова М.А., Басс И.А., Горленко Ж.М. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика. 2006. Т. 42. №11. С. 1495-1511.
    2. Петрова М.А. Горизонтальный перенос генов устойчивости к соединениям ртути и антибиотикам в природных популяциях палеобактерий. Диссертация на соискание степени доктора биологических наук. Москва: 2013. С. 52-89.
    3. Егоров Н. С. Основы учения об антибиотиках. Учебник (изд. 6-е). М.: Издательство МГУ, 2004. С. 7-61.
    4. Энциклопедия для детей Аванта+ // Химия. Т.17. М.: Аванта+, 2004. С. 329.
    5. Ovchinnikov Yu.A., Monastyrskaya G.S., Gubanov V.V., Lipkin V.M., Sverdlov E.D., Kiver I.F., Bass I.A., Mindlin S.Z., Danilevskaya O.N., Khesin R.B. Primary structure of Escherichia coli RNA polymerase nucleotide substitution in the beta subunit gene of the rifampicin resistant rpoB255 mutant // Molecular and General Genetics. 1981. V.184. №3. С. 536-538
    6. Чеботарь И.В., Маянский А.Н.,Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биопленочных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14, № 1. С. 51-58.

    Достарыңызбен бөлісу:

    Антибиотики

    Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

    Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов.

    Антибиотики. История получения и применения антибиотиков

    Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

    Учение об антибиотиках — молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин — антибиотик, открывший летоисчисление эры антибиотиков.

    Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

    Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат — сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

    Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина — алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

    В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

    Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

    В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

    И. И. Мечников (1845 — 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

    В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение — микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

    Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

    В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

    В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

    Открытие Флеминга

    В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) — фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

    Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году — явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

    Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

    Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция…, оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных… Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

    Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

    Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

    В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

    Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

    В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

    Побочные действия

    Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

    Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.

    Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

    В 1871-1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

    С именем русского ученого И. И. Мечников а (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

    Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

    История открытия антибиотиков

    Как оказалось, ацидофильная палочка обладает более ярко выраженными антагонистическими свойствами по сравнению с болгарской палочкой.

    В конце XIX - начале XX в. были открыты антагонистические свойства у спорообразующих бактерий. К этому же периоду относятся первые работы, в которых описываются антагонистические свойства у актиномицетов. Позднее из культуры почвенной спороносной палочки Bacillus brevis Р. Дюбо (1939) удалось выделить антибиотическое вещество, названное тиротрицином, которое представляло собой смесь двух антибиотиков - тироцидина и грамицидина. В 1942 г. советскими исследователями Г. Ф. Гаузе и М. Г. Бражниковой был выделен из подмосковных почв новый штамм Bacillus brevis, синтезирующий антибиотик грамицидин С, отличающийся от грамицидина Дюбо.

    В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения - мицетин - и изучили условия биосинтеза и применения мицетина в клинике.

    А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicillium notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

    С открытия пенициллина началась новая эра в лечении инфекционных болезней - эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов - продуцентов антибиотиков стали носить целенаправленный характер.

    В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942 г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство.

    Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

    В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грам отрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогранулематоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных мик роорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

    В настоящее время число известных антибиотиков приближается к 2000, однако в клинической практике используется всего около 50.

    Антибиотик – это химическое вещество, которое производится одним организмом и разрушает другой. Название «антибиотик» произошло от слова «антибиоз» (с гр. «anti» — «против», «bios» — «жизнь») – термина, который в 1889 году ввел ученик Луи Пастера Пол Виллемин. Он означает процесс, посредством которого одна жизнь может быть использована для разрушения другой.

    "Жизнь против жизни"

    В широком понимании антибиотики – это общее название лекарственных средств, которые используют для борьбы с бактериальными заболеваниями. Они содержат вещества, которое вырабатывается некоторыми микробами. Антибиотики получают из растений, грибов, воды, почвы и даже воздуха. Попадая в организм, они атакуют и убивают инфекцию, но не повреждают здоровые клетки. Антибиотики используются для лечения различных опасных болезней, таких как туберкулез, сифилис, дифтерия и много других.

    Люди используют антибиотики уже более 2500 лет. Конечно, раньше они имели несколько другой вид, нежели тот, к которому привык современный человек. Никаких таблеток и капсул – только то, что можно было достать в природе. К примеру, в качестве антибиотиков часто использовали плесень – она помогала вылечить сыпь, гнойные раны и кожные инфекции.

    В конце 1800-х начался настоящий бум в сфере медицинских исследований. Главной причиной является изобретение инструмента, без которого сегодня не обходится ни одна лаборатория – микроскопа. Ученые впервые открыли для себя мир микроорганизмов, которых нельзя увидеть невооруженным глазом.

    Луи Пастер обнаружил, что не все бактерии безвредны для человека. Он исследовал анализы множества больных пациентов и доказал существование болезнетворных бактерий. После него исследованием инфекций занялся Роберт Кох, который разработал метод выделения и размножения бактерий. С того момента ученые пытались разработать препараты, которые смогут убивать микробы, но все они оказывались либо опасными, либо неэффективными.

    Открытие Александра Флеминга

    Тысячи лет человечество безрезультатно боролось с эпидемиями смертоносных болезней. 90% детей умирали в младенческом возрасте от инфекций, которые сегодня можно вылечить за несколько дней. Еще двести лет назад не существовало эффективного лечения таких заболеваний, как пневмония, гонорея или ревматическая лихорадка.

    Больницы были переполнены людьми с заражением крови, которое началось из-за банальной царапины или раны. Конечно, впоследствии все они умирали. Все изменилось только после изобретения антибиотика под названием пенициллин.

    Антибиотики являются соединениями, продуцируемыми бактериями и грибами, которые способны убивать или ингибировать конкурирующие виды микроорганизмов. Это явление давно известно – еще древние египтяне применяли примочки с заплесневелого хлеба для инфицированных ран. Но пенициллин, первый настоящий антибиотик, был обнаружен только в 1928 году. Его открыл Александр Флеминг – профессор бактериологии в больнице Святой Марии в Лондоне.

    Вернувшись из отпуска 3 сентября 1928 года, Флеминг начал сортировать чашки Петри, содержащие колонии стафилококковых бактерий, которые вызывают боль в горле, фурункулы и абсцессы. В одной из чашек он заметил что-то необычное. Она была усеяна колониями стафилококка, за исключением одной области. Крохотная зона, где находилась капля плесени, была абсолютно чистой от бактерий. Пространство вокруг плесени, которою позже назвали редким штаммом Penicillium notatum, было прозрачным. Казалось, что плесень выделяла нечто, препятствующее росту бактерий.

    Флеминг обнаружил, что плесень способна убивать широкий спектр вредных бактерий, таких как стрептококк, менингококк и дифтерийная палочка. Затем он начал работать над новым заданием. Ученый поставил перед своими учениками Стюартом Крэддоком и Фредериком Ридли трудную задачу – они должны были выделить из плесени чистый пенициллин. Эксперимент до конца не удался – они смогли подготовить только растворы сырого материала.

    Флеминг опубликовал свои результаты в «Британском журнале экспериментальной патологии» в июне 1929 года. В докладе он лишь слегка коснулся потенциальных терапевтических преимуществ пенициллина. На этом этапе было похоже, что главной целью его исследований будет поиск нечувствительных к пенициллину бактерий. Это, по крайней мере, имело практическое значение для бактериологов и сохраняло их интерес к пенициллину.

    Другие ученые, в том числе Гарольд Райстрик, профессор биохимии Лондонской школы гигиены и тропической медицины, также пытались очистить пенициллин. Но все они потерпели неудачу.

    Исследование пенициллина в Оксфордском университете

    Говард Флори, Эрнст Чейн и их коллеги из школы патологии сэра Уильяма Данна в Оксфордском университете превратили пенициллин из лабораторного любопытства в жизненно важный препарат. Их работа по очистке пенициллина началась 1939 году. Из-за военных условий проводить исследования было особенно трудно. Для выполнения программы экспериментов на животных и клинических испытаний команде необходимо было обработать до 500 литров фильтрата плесени в неделю.

    Они начали выращивать его в разнообразных емкостях, которые совсем не были похожи на сосуды для культивирования: ваннах, подносах, молочных бутылках и пищевых банках. Позже на их заказ был разработан специальный ферментационный сосуд. Ученые наняли команду «пенициллиновых девочек», которые следили за ферментацией. Фактически, лабораторию Оксфорда превратили в пенициллиновую фабрику.

    Между тем, биохимик Норманн Хитли извлек пенициллин из огромных объемов фильтрата путем экстракции его в амилацетат, а затем обратно в воду с использованием противоточной системы. Эдвард Абрахам, другой биохимик, которого наняли для ускорения производства, задействовал недавно открытую методику хроматографии на колонке удаления примесей из пенициллина.

    В 1940 году Говард Флори провел важные эксперименты, которые показали, что пенициллин может защитить мышей от инфицирования смертоносными стрептококками. Затем, 12 февраля 1941 года 43-летний полицейский Альберт Александер стал первым человеком, который испытал на себе оксфордский пенициллин. Он поцарапал губы во время обрезки роз, после чего развилась угрожающая жизни инфекция с огромными абсцессами, которые поразили глаза, лицо и легкие.

    Через несколько дней после инъекции состояние пациента заметно улучшилось. Но запасы лекарств закончились, и через несколько дней он умер. Гораздо лучшие результаты последовали за другими пациентами, и вскоре возникли планы сделать пенициллин доступным для британских солдат, которые получали ранения на поле боя.

    Производство пенициллина в США во время Второй мировой войны

    Говард Флори признал, что крупномасштабное производство пенициллина невозможно осуществить в Британии, где химическая промышленность была полностью поглощена военными действиями. При поддержке фонда Рокфеллера Флори и его коллега Норман Хитли летом 1941 года отправились в Соединенные Штаты. Они планировали заинтересовать американскую фармацевтическую промышленность производством пенициллина в больших масштабах.

    Йельский физиолог Джон Фултон связал своих британских коллег с людьми, которые могли бы помочь им в достижении этой цели. И вскоре она была достигнута – заняться производством решила Северная региональная исследовательская лаборатория Департамента (NRRL) в Пеории, штат Иллинойс.

    Через несколько недель ученый Эндрю Мойер обнаружил, что можно значительно увеличить выход пенициллина, заменив лактозу, которые использовали оксфордские исследователи, сахарозой. Вскоре после этого он сделал еще более важное открытие – Мойер увидел, что добавление кукурузного раствора в среду для ферментации привело к десятикратному увеличению выхода.

    Вскоре начался глобальный поиск лучших штаммов, которые продуцируют пенициллин. Образцы почв отправлялись в NRRL со всего мира. По иронии судьбы, наиболее подходящей оказалась заплесневевшая дыня с фруктового рынка Пеории. Более продуктивный мутант так называемого штамма канталупы был получен с использованием рентгеновских лучей в Институте Карнеги. Время шло, а применение пенициллина все еще ограничивалось клиническими испытаниями.

    Стадии ферментации, восстановления, очистки и упаковки быстро уступили совместным усилиям ученых-химиков и инженеров, которые работали над экспериментальным производством пенициллина. 1 марта 1944 года компания Pfizer открыла первый коммерческий завод для крупномасштабного производства пенициллина в Бруклине, Нью-Йорк.

    "Чудо-лекарство"

    Тем временем клинические исследования в военном и гражданском секторах подтвердили терапевтические свойства пенициллина. Они показали, что препарат эффективен при лечении широкого спектра болезней, включая стрептококковые, стафилококковые и гонококковые инфекции. Армия США установила ценность пенициллина для лечения хирургических и раневых инфекций.

    Клинические исследования также продемонстрировали его эффективность против сифилиса, и к 1944 году он стал основным средством лечения этой болезни в вооруженных силах Великобритании и Соединенных Штатов. Поскольку слухи относительно этого нового «чудо-лекарства» стала доходить до общественности, спрос на пенициллин увеличился. Но сначала поставки были ограничены, и приоритет отдавался военному использованию.

    К счастью, с начала 1944 года производство пенициллина начало резко увеличиваться – с 21 до 1663 миллиардов единиц. А уже в 1945 году эта цифра составляла 6,8 триллионов. Американскому правительству удалось в конечном итоге снять все ограничения на доступность препарата, и состоянием на 15 марта 1945 года пенициллин стал доступен каждому потребителю – приобрести его можно было в ближайшей аптеке.

    К 1949 году годовой объем производства пенициллина в Соединенных Штатах составлял 133,229 миллиарда единиц, а цена упала с 20 долларов (1943 год) до 10 центов.

    На страже человечества

    В настоящее время используется на фармацевтическом рынке доступно более 70 различных видов антибиотиков. Большинство из них используется для лечения инфекций, некоторые – для грибов и простейших. Сегодня они считаются полностью безопасным лекарством, конечно, при условии соблюдения дозировки.

    Ученые постоянно работают над изобретением новых антибиотиков. Они испытывают тысячи природных растений и химических веществ. Это обусловлено тем, что инфекции вырабатывают иммунитет к устаревшим препаратам. С каждым годом они мутируют и совершенствуются, поэтому эффективное лечение значительно усложняется.

    Антибиотики – великое изобретение, возможно, одно из лучших.

    Они помогают людям выживать в борьбе с болезнями и инфекциями, которые в противном случае могли бы их убить. Антибиотики спасают жизни – что может быть полезней? Главное – использовать их с умом.

    Сотни человеческих жизней спасены за время применения в медицинской практике антибиотиков. Открытие пенициллина позволило легко избавлять людей от тех болезней, которые вплоть до начала XX века считались неизлечимыми.

    Медицина до изобретения пенициллина

    Многие столетия медицина была не в силах сохранить жизнь всех заболевших. Первым шагом к прорыву стало открытие факта о природе происхождения многих недугов. Речь идет о том, что большинство заболеваний возникает вследствие губительного воздействия микроорганизмов. Достаточно быстро ученые поняли, что можно уничтожить с помощью других микроорганизмов, проявляющих «враждебное отношение» к возбудителям недугов.

    В процессе своей медицинской практики сразу несколько ученых еще в XIX пришли к такому выводу. Среди них был и Луи Пастер, который открыл, что действие некоторых видов микроорганизмов приводит к гибели бацилл Но этих сведений оказалось недостаточно. Нужно было найти конкретные действенные способы решения проблемы. Все попытки медиков создать универсальное лекарство заканчивались неудачно. И лишь чистая случайность и блестящая догадка помогли тому ученому, кто изобрел пенициллин.

    Полезные свойства плесени

    Сложно поверить в то, что самая обычная плесень обладает бактерицидными свойствами. Но это действительно так. Ведь это не просто зеленовато-серая субстанция, а микроскопический грибок. Он возникает из зародышей еще меньшего размера, которые витают в воздухе. В условиях плохой циркуляции воздуха и других факторов из них образуется плесень. Пенициллин еще не был открыт, но в трудах Авиценны XI века есть упоминания о лечении гнойных заболеваний с помощью плесени.

    Спор двух ученых

    В 60-х годах XIX века российские медики Алексей Полотебнов и Вячеслав Манассеин всерьез поспорили. Предметом спора была плесень. Полотебнов считал, что она является родоначальников всех микробов. Манассеин настаивал на противоположной точке зрения, и чтобы доказать свою правоту, провел серию исследований.

    Он наблюдал за ростом спор плесени, которые посеял в питательную среду. В результате В. Манассеин увидел, что развитие бактерий не происходило именно на местах роста плесневого грибка. Его мнение теперь было подтверждено опытным путем: плесень действительно блокирует рост других микроорганизмов. Его оппонент признал ошибочность своего утверждения. Мало того, Полотебнов сам начал пристально изучать антибактериальные свойства плесени. Имеются сведения, что он даже успешно применял их в лечении плохо заживающих кожных язв. Полотебнов посвятил несколько глав своего научного труда описанию свойств плесени. Там же ученый рекомендовал использовать эти особенности в медицине, в частности, для лечения кожных заболеваний. Но эта идея не вдохновила других медиков и была несправедливо забыта.

    Кто изобрел пенициллин

    Эта заслуга принадлежит ученому-медику Александру Флемингу. Он был профессором в лаборатории больницы св. Марии города Лондона. Основная тема его научной деятельности - это рост и свойства стафилококков. Открытие пенициллина он совершил случайно. Особой аккуратностью Флеминг не славился, скорее, наоборот. Однажды, оставив на рабочем столе немытые чашки с бактериальными культурами, спустя несколько дней он заметил образовавшуюся плесень. Его заинтересовало то, что в пространстве вокруг плесени бактерии были уничтожены.

    Флеминг дал название субстанции, выделяемой плесенью. Он назвал ее пенициллином. После проведения большого количества опытов Ученый убедился в том, что это вещество может убивать разные виды болезнетворных бактерий.

    В каком году изобрели пенициллин? В 1928 наблюдательность Александра Флеминга подарила миру это чудодейственное по тем временам вещество.

    Производство и применение

    Флеминг не смог научиться получать пенициллин, поэтому сначала практическая медицина не очень заинтересовалась его открытием. Теми, кто изобрел пенициллин как медицинский препарат, были Говад Флори и Чейн Эрнст. Они вместе со своими соратниками выделили чистый пенициллин и создали на его основе первый в мире антибиотик.

    В 1944 году, во время Второй мировой войны, ученые Соединенных Штатов смогли промышленным способом получать пенициллин. Апробация препарата заняла немного времени. Практически сразу пенициллин стали использовать вооруженные силы союзников для лечения раненых. Когда война закончилась, гражданское население США тоже смогло приобрести чудо-лекарство.

    Все, кто изобрел пенициллин (Флеминг, Флори, Чейн), стали обладателями Нобелевской премии в области медицины.

    Пенициллин: история открытия в России

    Когда Великая Отечественная война еще продолжалась, И. В. Сталин предпринимал многочисленные попытки покупки лицензии на производство пенициллина в России. Но Соединенные Штаты вели себя неоднозначно. Сначала была названа одна сумма, надо сказать, астрономическая. Но позже ее еще два раза увеличивали, объясняя эти повышения неправильными первоначальными расчетами. В результате переговоры не увенчались успехом.

    На вопрос о том, кто изобрел пенициллин в России, нет однозначного ответа. Поиск способов производства аналогов был поручен микробиологу Зинаиде Ермольевой. Она смогла получить вещество, названное впоследствии крустозином. Но по своим свойствам этот препарат сильно уступал пенициллину, да и сама технология производства была трудоемкой и дорогостоящей.

    Было принято решение все же купить лицензию. Продавцом выступил Эрнст Чейн. После этого началось освоение технологии и запуск ее в производство. Этим процессом руководил Николай Копылов. пенициллина было налажено достаточно быстро. За это Николай Копылов был удостоен

    Антибиотики в общем и пенициллин в частности, безусловно, обладают поистине уникальными свойствами. Но сегодня все чаще ученые проявляют беспокойство тем, что многие бактерии и микробы вырабатывают устойчивость к такому лечебному действию.

    Эта проблема сейчас требует тщательного изучения и поиска возможных решений, ведь действительно, может наступить время, когда некоторые бактерии уже не будут реагировать на действие антибиотиков.

    В современном мире антибиотики принимаются как должное. И большинству людей даже в голову не приходит, что буквально в прошлом столетии смертность от сепсиса, воспаления легких, туберкулеза составляла не меньше 97%.

    Сегодня же, благодаря антибиотикам, многие опасные заболевания можно излечить без побочных последствий. История резистентности антибиотиков, как и применение, столь полезных микроорганизмов по-своему удивительна. Мы подготовили для Вас познавательный реферат на эту тему и думаем, что Вы благосклонно оцените его достоверное изложение.

    Впервые уникальные бактерии были обнаружены в 1860 году, когда двое русских ученых Алексей Полотебнов и Вячеслав Манассеин спорили о природе плесени. Последний стал исследовать предмет спора и осознал, что около него нет болезнетворных микроорганизмов.

    Углубившись в изучение этого, Манассеин (на фото – справа) - опрыскал руку знакомого, болеющего язвами, эликсиром из плесени. Результат поразил обоих – ранки стали стремительно заживать. В 1872 году Вячеслав опубликовал свою теорию на основе увиденного, но она осталась незамеченной.

    Позднее на просторах России отличилась Зинаида Ермольева, которая в 1942 году выделила пенициллин из плесени.

    Два года она проводила эксперименты, изучая бактерицидные свойства грибка. И в 1944 году опробовала их на тяжело раненых бойцах. Благодаря Зинаиде, удалось спасти сотни советских солдат и наладить массовое производство нового «чудо-зелья».

    Кто является изобретателем антибиотиков в Европе?

    Многие европейские биологи посвятили свои жизни исследованию всевозможных веществ, которые могли бы сохранить человечеству здоровье.

    Среди них выделился британский бактериолог Александр Флеминг, который считается официальным первооткрывателем антибиотиков. Он подарил миру пенициллин, ставший первым известным лекарством с мощным действием.

    Ирония, но открытие было сделано совершенно случайно. Флеминг был всецело погружен в науку, поэтому забывал про банальную уборку. Однажды в одной из пробирок, где хранились бактерии стафилококка, образовалась плесень. Когда это обнаружилось, удивлению биолога не было границ – стафилококка словно не было! Грибок уничтожил болезнетворные бактерии.

    Флеминг стал изучать феномен. Он также обнаружил, что пенициллин не влияет на животные организмы, разрушая только «плохие» микробы, что означало одно - его можно использовать в качестве лечебного средства.

    Своей находкой ученый официально поделился с коллегами в октябре 1929 года. Но те проигнорировали сообщение, сказав, что оно не несёт ценности, потому как еще нужно выделить чистый пенициллин из грибковой смеси. Считалось, что сделать это, сохранив лекарство в целостности, невозможно. Микробиологии требовались химические опыты, что никак не удавалось Александру.

    Изобретения антибиотиков в Америке (США)

    Работу Флеминга подхватили два американских биолога-энтузиаста – Эрнст Борис Чейн и Говард Флори. Первый, кстати, по национальности был русский. В 1939 году они плотно занялись изучением теории британца и к 1942 году разработали способы очистки пенициллина.

    Тогда же их лекарство спасло жизнь бойцу американской армии, страдающему от менингита. Узнав об этом, правительство заказало 120 миллионов единиц подобного средства. С этого года мир и узнал про антибиотики.

    В 1945 году все трое – Флори, Чейн и Флеминг заслуженно получили Нобелевскую премию в области медицины и физиологии.

    Кто изобрел антибиотики широкого спектра действия?

    Это лекарства, которые не только подавляют «в корне» рост болезнетворных микроорганизмов, но и не позволяют им размножаться.

    Эти лекарства уничтожают известные человечеству бактерии:

    • стафилококков;
    • стрептококков;
    • кишечную палочку;
    • возбудителя чумы;
    • различного рода вирусы.

    К антибиотикам широкого спектра действия относятся биомицин, тетрациклин, террамицин, хлорамфеникол, левомицетин и синтомицин.

    Достоверных источников о том, кто именно и когда их открыл, не обнаружено.

    Изобретатели противоопухолевых антибиотиков

    Первый антибиотик против опухолей под названием дактиномицин увидел свет в 1963 году. Дальнейшее изучение этого вещества привело к открытию прочих противоопухолевых препаратов.

    Сегодня к наиболее эффективных из них относят антрациклиновые антибиотики:

    • даунорубицин;
    • доксорубицин;
    • идарубицин;
    • карубицин;
    • эпирубицин.

    Антрациклиновые антибиотики применяются для лечения всевозможных опухолей, среди которых разные виды рака, карциномы, саркомы мягких тканей и многие другие злокачественные образования.

    Но точно сказать, кто был первооткрывателем противоопухолевых антибиотиков, весьма сложно.

    Области применения антибиотиков

    В современном мире антибиотики применяются в медицине для лечения большинства серьёзных заболеваний. Их выписывают при различных осложнениях и острых формах болезней, поражающих системы организма. Они эффективно справляются практически со всеми известными бактериями. Это воистину необычные средства.

    Существует пять способов применения антибиотиков:

    • перорально (внутрь);
    • внутривенно;
    • внутримышечно;
    • в спинной мозг;
    • ректально (через прямую кишку).

    При тяжелых случаях заболеваний используют парентеральный метод, который включает все виды, кроме перорально. Обычно это капельницы. При более простых болезнях, которые протекают без особых осложнений, принимают таблетки, суспензии, сиропы, капсулы.

    Литература для изучения эры антибиотиков

    Со времен открытия антибиотиков было написано множество книг, повествующих про столь полезные вещества.

    Среди таковых стоит выделить:

    1. «Медицинскую микробиологию» В. И. Покровского,
    2. «Медицинскую микробиологию, вирусологию, иммунологию» А. А. Воробьева,
    3. «Фармакологию» Д. А. Харкевича, «Антибиотики и химиотерапевтические препараты» И. Ф. Каримова,
    4. «Осторожно, антибиотики: оранжевый сигнал тревоги!» И. С. Маркова.

    Все эти книги раскрывают загадки и свойства лекарств, хранят на своих страницах философские размышления ученых и результаты биологических экспериментов. В основном, они написаны медицинским языком, но разобраться в нем несложно.

    Следует заметить , что ни один биолог, открывший антибиотики, не требовал вознаграждения своей работы и не претендовал на авторство. Они считали, что открытия, спасающие человеческие жизни, не должны превращаться в источники дохода. И это заслуживает уважения.

    Продолжение. . .


    Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

    Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов. Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

    Учение об антибиотиках - молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин - антибиотик, открывший летоисчисление эры антибиотиков.

    Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

    Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

    Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина - алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

    В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

    Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

    В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

    И. И. Мечников (1845 - 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

    В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

    Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

    В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

    В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

    Открытие Флеминга

    В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) - фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

    Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году - явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

    Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

    Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция..., оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных... Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

    Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

    Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

    В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

    Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

    В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

    Побочные действия

    Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

    Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.