Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Пастырь и учитель. Духовник Царской Семьи. На Полтавской кафедре
  • Имя Серафима в православном календаре (Святцах)
  • Чему равна вписанная окружность. Вписанная и описанная окружности

    Чему равна вписанная окружность. Вписанная и описанная окружности

    Цели урока:

    • Углубить знания по теме «Описанная окружности в треугольниках»


    Задачи урока:

    • Систематизировать знания по этой теме
    • Подготовиться к решению задач повышенной сложности.

    План урока:

    1. Введение.
    2. Теоретическая часть.
    3. Для треугольника.
    4. Практическая часть.

    Введение.

    Тема «Вписанные и описанные окружности в треугольниках» является одной из самых сложных в курсе геометрии. На уроках ей уделяется очень мало времени.

    Геометрические задачи этой темы включаются во вторую часть экзаменационной работы ЕГЭ за курс средней школы.
    Для успешного выполнения этих заданий необходимы твердые знания основных геометрических фактов и некоторый опыт в решении геометрических задач.

    Теоретическая часть.

    Описанная окружность многоугольника - окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать O) пересечения серединных перпендикуляров к сторонам многоугольника.

    Свойства.

    Центр описанной окружности выпуклого n-угольника лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности).
    Вокруг любого правильного многоугольника можно описать окружность.

    Для треугольника.

    Окружность называется описанной около треугольника, если она проходит через все его вершины.

    Вокруг любого треугольника можно описать окружность, притом только одну . Её центром будет являться точка пересечения серединных перпендикуляров.

    У остроугольного треугольника центр описанной окружности лежит внутри , у тупоугольного - вне треугольника , у прямоугольного - на середине гипотенузы .

    Радиус описанной окружности может быть найден по формулам:

    Где:
    a,b,c - стороны треугольника,
    α - угол, лежащий против стороны a,
    S - площадь треугольника.


    Доказать:

    т.О - точка пересечения серединных перпендикуляров к сторонам ΔABC

    Доказательство:

    1. ΔAОC - равнобедренный, т.к. ОА=ОС (как радиусы)
    2. ΔAОC - равнобедренный, перпендикуляр OD - медиана и высота, т.е. т.О лежит на серединном перпендикуляре к стороне АС
    3. Аналогично доказывается, что т.О лежит на серединных перпендикулярах к сторонам АВ и ВС

    Что и требовалось доказать.

    Замечание.

    Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

    Предмети > Математика > Математика 7 класс

    В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

    Вконтакте

    Какая окружность вписана, а какая описана

    Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра . Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

    Рисунок 1. Вписанная и описанная окружности треугольника

    На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

    Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла , после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

    На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя ?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

    Свойство окружности, которой принадлежат вершины треугольника

    Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

    Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

    Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

    Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

    Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

    Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

    Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

    Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

    Исчисление радиуса вписанной окружности

    Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

    • площадь;
    • градусная мера каждого угла;
    • длины сторон и периметр.

    Рисунок 3. Расположение вписанной окружности внутри треугольника

    Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, боковые стороны и углы (для равнобокого треугольника).

    Использование полупериметра

    Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

    Если дан «правильный»

    Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке . Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым , скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

    Если боковины одинаковой длины

    Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

    Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

    Рисунок 4. Поиск значения радиуса вписанной окружности

    Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

    Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

    Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

    При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

    В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

    Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

    Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

    Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

    В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

    Треугольник, вписанный в окружность геометрия 7 класс

    Прямоугольные треугольники, вписанные в окружность

    Вывод

    Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

    Определение 2

    Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

    Рисунок 1. Вписанная окружность

    Теорема 1 (об окружности, вписанной в треугольник)

    Теорема 1

    В любой треугольник можно вписать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

    Рисунок 2. Иллюстрация теоремы 1

    Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

    Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

    Приведем еще несколько фактов, связанных с понятием вписанной окружности:

      Не во всякий четырехугольник можно вписать окружность.

      В любом описанном четырехугольнике суммы противоположных сторон равны.

      Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

    Определение 3

    Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

    Определение 4

    Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

    Рисунок 3. Описанная окружность

    Теорема 2 (об окружности, описанной около треугольника)

    Теорема 2

    Около любого треугольника можно описать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

    Рисунок 4. Иллюстрация теоремы 2

    Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

    Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

    Приведем еще несколько фактов, связанных с понятием описанной окружности:

      Около четырехугольника не всегда можно описать окружность.

      В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

      Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

    Пример задачи на понятия вписанной и описанной окружности

    Пример 1

    В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

    Решение.

    Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

    Рисунок 5.

    Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

    \[{(3-r)}^2=r^2+1\] \ \ \

    Ответ: $\frac{4}{3}$.

    Определение 2

    Многоугольник, удовлетворяющий условию определения 1, называется описанным около окружности.

    Рисунок 1. Вписанная окружность

    Теорема 1 (об окружности, вписанной в треугольник)

    Теорема 1

    В любой треугольник можно вписать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем биссектрисы, которые пересекаются в точке $O$ и проведем из нее перпендикуляры на стороны треугольника (Рис. 2)

    Рисунок 2. Иллюстрация теоремы 1

    Существование: Проведем окружность с центром в точке $O$ и радиусом $OK.\ $Так как точка $O$ лежит на трех биссектрисах, то она равноудалена от сторон треугольника $ABC$. То есть $OM=OK=OL$. Следовательно, построенная окружность также проходит через точки $M\ и\ L$. Так как $OM,OK\ и\ OL$ - перпендикуляры к сторонам треугольника, то по теореме о касательной к окружности, построенная окружность касается всех трех сторон треугольника. Следовательно, в силу произвольности треугольника, в любой треугольник можно вписать окружность.

    Единственность: Предположим, что в треугольник $ABC$ можно вписать еще одну окружность с центром в точке $O"$. Её центр равноудален от сторон треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OK$. Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.

    Приведем еще несколько фактов, связанных с понятием вписанной окружности:

      Не во всякий четырехугольник можно вписать окружность.

      В любом описанном четырехугольнике суммы противоположных сторон равны.

      Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

    Определение 3

    Если на окружности лежат все вершины многоугольника, то окружность называется описанной около многоугольника (Рис. 3).

    Определение 4

    Многоугольник, удовлетворяющий условию определения 2, называется вписанным в окружность.

    Рисунок 3. Описанная окружность

    Теорема 2 (об окружности, описанной около треугольника)

    Теорема 2

    Около любого треугольника можно описать окружность и притом только одну.

    Доказательство.

    Рассмотрим треугольник $ABC$. Проведем в нем серединные перпендикуляры, пересекающиеся в точке $O$, и соединим ее с вершинами треугольника (рис. 4)

    Рисунок 4. Иллюстрация теоремы 2

    Существование: Построим окружность с центром в точке $O$ и радиусом $OC$. Точка $O$ равноудалена от вершин треугольника, то есть $OA=OB=OC$. Следовательно, построенная окружность проходит через все вершины данного треугольника, значит, она является описанной около этого треугольника.

    Единственность: Предположим, что около треугольника $ABC$ можно описать еще одну окружность с центром в точке $O"$. Её центр равноудален от вершин треугольника, а, следовательно, совпадает с точкой $O$ и имеет радиус, равный длине $OC.$ Но тогда эта окружность совпадет с первой.

    Теорема доказана.

    Следствие 1: Центр описанной около треугольника окружности совпадает с точкой пересечения его серединных перпендикуляров.

    Приведем еще несколько фактов, связанных с понятием описанной окружности:

      Около четырехугольника не всегда можно описать окружность.

      В любом вписанном четырехугольнике сумма противоположных углов равна ${180}^0$.

      Если сумма противоположных углов четырехугольника равна ${180}^0$, то около него можно описать окружность.

    Пример задачи на понятия вписанной и описанной окружности

    Пример 1

    В равнобедренном треугольнике основание равно 8 см, боковая сторона равна 5 см. Найти радиус вписанной окружности.

    Решение.

    Рассмотрим треугольник $ABC$. По следствию 1, мы знаем, что центр вписанной окружности лежит на пересечении биссектрис. Проведем биссектрисы $AK$ и $BM$, которые пересекаются в точке $O$. Проведем перпендикуляр $OH$ из точки $O$ на сторону $BC$. Изобразим рисунок:

    Рисунок 5.

    Так как треугольник равнобедренный, то $BM$ и медиана и высота. По теореме Пифагора ${BM}^2={BC}^2-{MC}^2,\ BM=\sqrt{{BC}^2-\frac{{AC}^2}{4}}=\sqrt{25-16}=\sqrt{9}=3$. $OM=OH=r$ -- искомый радиус вписанной окружности. Так как $MC$ и $CH$ отрезки пересекающихся касательных, то по теореме о пересекающихся касательных, имеем $CH=MC=4\ см$. Следовательно, $BH=5-4=1\ см$. $BO=3-r$. Из треугольника $OHB$, по теореме Пифагора, получим:

    \[{(3-r)}^2=r^2+1\] \ \ \

    Ответ: $\frac{4}{3}$.

    Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

    Окружностью называется множество точек, расположенных на одинаковом расстоянии от данной точки, которая называется центром окружности.

    Для любой точки , лежащей на окружности выполняется равенство (Длина отрезка равна радиусу окружности.

    Отрезок, соединяющий две точки окружности называется хордой.

    Хорда, проходящая через центр окружности называется диаметром окружности ().

    Длина окружности:

    Площадь круга:

    Дуга окружности:

    Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда стягивает две дуги: и . Равные хорды стягивают равные дуги.

    Угол между двумя радиусами называется центральным углом :

    Чтобы найти длину дуги , составляем пропорцию:

    а) угол дан в градусах:

    б) угол дан в радианах:

    Диаметр, перпендикулярный хорде , делит эту хорду и дуги, которые она стягивает пополам:

    Если хорды и окружности пересекаются в точке , то произведения отрезков хорд, на которые они делятся точкой равны между собой:

    Касательная к окружности.

    Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

    Касательная к окружности перпендикулярна радиусу, проведенному к точке касания.

    Если из данной точки проведены к окружности две касательные, то отрезки касательных равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:


    Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть :

    Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть :


    Углы в окружности.

    Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

    Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным углом . Вписанный угол измеряется половиной дуги, на которую он опирается:

    ∠∠

    Вписанный угол, опирающийся на диаметр, прямой:

    ∠∠∠

    Вписанные углы, опирающиеся на одну дугу, равны :

    Вписанные углы, опирающиеся на одну хорду равны или их сумма равна

    ∠∠

    Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:


    Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

    ∠ ∠∠(⌣ ⌣ )

    Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.


    ∠ ∠∠(⌣ ⌣ )

    Вписанная окружность.

    Окружность называется вписанной в многоугольник , если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

    Не во всякий многоугольник можно вписать окружность.

    Площадь многоугольника, в который вписана окружность можно найти по формуле

    здесь - полупериметр многоугольника, - радиус вписанной окружности.

    Отсюда радиус вписанной окружности равен

    Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны . Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

    В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.


    Радиус вписанной окружности равен . Здесь

    Описанная окружность.

    Окружность называется описанной около многоугольника , если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

    Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .

    Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

    Радиус описанной окружности вычисляется по формулам:

    Где - длины сторон треугольника, - его площадь.

    Теорема Птолемея

    Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон: