Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Становление патопсихологии
  • Как приготовить тортилью
  • Как приготовить тортилью
  • Строение и функции крови. Группа крови

    Строение и функции крови. Группа крови

    ВСПОМНИТЕ

    Вопрос 1. В чём проявляется защитная функция крови?

    Защитная функция крови - клетки, которые являются составной частью крови, убивают чужеродные агенты, проникающие в организм и вызывающие заболевания. Этими агентами могут быть бактерии, грибы, простейшие или неклеточные формы жизни - вирусы. Ещё одна сторона защитной функции крови - это образование сгустка крови - тромба в том месте, где повреждён сосуд. Этот процесс защищает организм от смертельно опасной кровопотери.

    Вопрос 2. Какие форменные элементы крови обеспечивают защитную функцию организма и в чём их конкретная роль?

    Лейкоциты обеспечивают защитную функцию организма. В крови человека находится несколько разновидностей лейкоцитов, каждая из которых выполняет определённые функции. Но все они обеспечивают крови выполнение её защитных функций. Одни виды лейкоцитов вырабатывают особые белки, которые распознают и связывают чужеродные агенты (бактерии, простейшие, грибы) и химические соединения. Эти белки называют антителами. Связанные антителами вредоносные частицы не могут проникнуть в ткани человека и становятся безвредными. Другие виды лейкоцитов способны к захвату и уничтожению чужеродных частиц, молекул и клеток, проникших в кровь, - фагоцитозу. Кроме того, они могут распознавать и уничтожать раковые и старые, отмирающие клетки.

    ВОПРОСЫ К ПАРАГРАФУ

    Вопрос 1. Что такое свёртывание крови и каков его механизм?

    Свёртывание крови - важнейшая защитная реакция, предохраняющая организм от кровопотери при разрушении сосудов. Для взрослого мужчины условно смертельно опасной является потеря 1,5-2,0 л крови, а вот женщина может перенести потерю даже 2,5 л, хотя это, конечно, приводит к отрицательным последствиям.

    В месте повреждения сосуда, например при порезе, начинают разрушаться тромбоциты, выделяя вещества, запускающие образование тромба. Кроме того, целый ряд необходимых для этого химических соединений поступает из повреждённых тканей и плазмы крови. В результате довольно длинной цепочки химических взаимодействий из белка плазмы крови, который называется фибриноген, образуются длинные нити белка фибрина. Эти нити сплетаются в подобие сетки, в которой «запутываются» форменные элементы крови и в результате возникает тромб, перекрывающий рану и прекращающий кровотечение.

    Вопрос 2. Какое значение имеет переливание крови?

    Переливание крови способно спасти жизнь человеку, у которого были большие кровопотери. Ещё древние греки пытались спасти истекающих кровью раненых воинов, давая им пить тёплую кровь ягнёнка или телёнка, хотя это мало помогало. В XIX в. в Лондоне были сделаны первые попытки непосредственного переливания крови от одного человека к другому, но при этом часто наблюдалось слипание эритроцитов, их разрушение, и в результате больной погибал. Оказалось, что кровь одного человека может быть смертельно опасной для другого. Когда в этой проблеме разобрались, то выяснили, что кровь всех людей можно разделить на четыре группы. В течение жизни группа крови у человека не меняется.

    Вопрос 3. Что вам известно о совместимости групп крови при её переливании?

    Существуют две системы обозначения групп крови. В первой группы крови обозначают римскими цифрами I-IV, а во второй - латинскими буквами А, В и нулём - система АВО. У людей с I(O) группой крови эритроциты не слипаются, и поэтому их кровь можно переливать всем людям, независимо от их группы крови. Таких людей называют универсальными донорами. Тем, у кого кровь относится к IV(AB) группе, можно переливать небольшое количество крови любой группы, так как у них в плазме нет веществ, приводящих к слипанию эритроцитов. Этих людей называют универсальными реципиентами. Тем, у кого кровь относится ко II(A) или III(B) группе, можно переливать кровь своей или I(O) группы. Но правильнее всегда использовать для переливания кровь той группы, которая течёт в сосудах нуждающегося в переливании человека.

    Вопрос 4. Кто такие доноры и реципиенты?

    Донор - в общем смысле это объект, отдающий что-либо другому объекту.

    Реципиент - объект или субъект, получающий (принимающий) что-либо от другого объекта или субъекта, называемого в противоположность донором.

    Вопрос 5. Известна ли вам ваша группа крови?

    Выясните, кто из ваших родственников или знакомых является донором. Обсудите с учащимися класса, почему люди, сдающие кровь, заслуживают почёта и уважения в обществе.

    ДОНОР - это человек, который отдаёт свою кровь другому человеку для сохранения его здоровья или жизни. Слово ДОНОР происходит от латинского глагола donare, что означает дарить.

    Компоненты и препараты крови широко применяются в хирургии (трансплантация органов, операции на сердце и опорно-двигательном аппарате); в онкологии и родовспоможении; при оказании помощи пострадавшим в катастрофах и авариях природного и техногенного характера.

    Донорская кровь нужна нашим согражданам всегда, каждый час, каждую минуту!

    ПОДУМАЙТЕ!

    Почему доноров или реципиентов иногда называют универсальными, но в каждом конкретном случае переливания крови предварительно проводят исследования на её совместимость?

    К настоящему времени установлено, что в крови человека присутствует много разновидностей молекул белка, способных взаимодействовать между собой, и врачи должны это учитывать при переливании крови.

    Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организма. В этих условиях важная роль принадлежит системе свертывания крови (системе гемокоагуляции), сохраняющей циркулирующую кровь в жидком состоянии и предотвращающей ее потерю через поврежденные сосуды посредством образования кровяных тромбов.

    Сущность свертывания крови заключается в переходе растворенного в плазме белка фибриногена в нерастворенный белок - фибрин, который образует нити, склеенные с краями раны. Сгусток крови (тромб) приостанавливает дальнейшее кровотечение, предохраняя организм от кровопотерь. Эта функция осуществляется благодаря способности крови к свертыванию - гемокоагуляции . Превращение фиброногена в фибрин осуществляется при воздействии фермента тромбина, который образуется из белка протромбина под влиянием тромбопластина, появляющегося в крови при разрушении тромбоцитов. Образование тромбопластина и превращение протромбина в тромбин протекают при участии ионов кальция.

    При кровопотерях в результате травмы и при некоторых операциях практикуется переливание человеку (называемому реципиентом) крови другого человека (донорской крови). При этом важно, чтобы донорская кровь была совместима с кровью реципиента. Дело в том, что при смешивании крови от разных лиц эритроциты, оказавшиеся в плазме крови другого человека, могут склеиваться (агглютинироваться), а затем разрушаться (гемолизироваться). Гемолиз эритроцитов (крови) может произойти при смешивании несовместимых групп крови или при введении в кровь гипотонического раствора, при действии химических ядовитых веществ - аммиака, бензина, хлороформа и других, а также в результате действия яданекоторых змей.

    В плазме, эритроцитах и лейкоцитах крови каждого человека имеются особые белки, которые способны взаимодействовать с такими же белками крови другого человека. В эритроцитах такие белки получили название агглютиногенов, обозначенных заглавными буквами А и В. Специфические белки плазмы крови получили название агглютининов, обозначенных буквами альфа и бета. С учетом наличия таких белков кровь людей подразделяют на четыре группы .

    Кровь всех четырех групп одинаково полноценная и отличается только содержанием различных по виду белков. Группа крови у человека постоянна, не изменяется в течение жизни и передается по наследству. При переливании крови нужно обязательно учитывать совместимость групп крови. При этом важно, чтобы в результате переливания крови эритроциты донора не склеивались в крови реципиента.

    Кровь некоторых людей может содержать белок, получивший название резус-фактора. Он впервые был обнаружен в крови обезьян макак-резус. Резус-фактор обнаруживается в крови примерно у 85 % людей. Кровь таких людей называют резус-положительной (Rh +). Кровь, в которой резус-фактор отсутствует, называют резус-отрицательной (Rh –).


    Тема: Группы крови, переливание крови. Свёртывание крови
    Цель: познакомить учащихся с сущностью биологического процесса свертывания крови, ролью витамина К и кальция в свертывании
    Планируемые результаты освоения материала: Характеризовать сущность биологического процесса свертывания крови; роль кальция и витамина К. строение и функции крови. Знать свою группу крови, резус-фактор. Анализ крови, малокровие, кроветворение.
    Тип урока: изучение нового материала.
    Характеристика деятельности уч-ся: Сам. работа с учебником, составление схемы
    Виды контроля, измерители: индивидуальный, фронтальный опрос.
    Оборудование: таблицы: «Кровь», «Группы крови»
    Ход урока
    Организационный момент
    Активизация знаний учащихся:
    Почему клеткам для процессов жизнедеятельности необходима внутренняя жидкая среда?
    Из каких компонентов состоит внутренняя среда организма? Как они связаны между собой?
    Какие функции выполняет кровь, тканевая жидкость и лимфа?
    Что такое лимфатические узлы, их роль? Покажите на себе, где они расположены?
    В чем проявляется взаимосвязь строения эритроцита с его функцией?
    Функции лейкоцитов?
    Актуализация
    ?Почему, когда мы порежемся, кровь останавливается, свертывается, образуется «болячка»? – ответы учеников
    В крови есть специальные клетки, которые отвечают за свертывание крови.
    Изучение нового материала
    Тема нашего урока «Группы крови, переливание крови. Свёртывание крови»
    Запись в тетрадь:
    Тромбоциты (кровяные пластинки) - принимают участие в свертывании крови.
    Травма – кровь выходит из сосуда – тромбоциты разрушаются – выделяют ферменты – кровь сворачивается
    Запись на доске и в тетрадь СХЕМЫ свертывания крови:
    СХЕМА свертывания крови: ферменты тромбоцита + О2 + соли кальция + витамин К + растворимый белок фибриноген = нити фибрина (нерастворимый белок) – образуется сетка, которая задерживает клетки крови – образуется сгусток
    Если нет каких-то элементов – кровь сворачиваться не будет.
    ?Как вы думаете, а при переливании крови, почему она не сворачивается? - ответы учеников
    ?Какой элемент крови легче всего удалить, что бы она не свернулась? – ответы учеников
    Легче всего из крови удалить соли кальция.
    При анализе крови определяют не только кол-во гемоглобина, но и концентрацию сахара, солей, скорость оседания эритроцитов.
    СОЭ(скорость оседания эритроцитов) в норме – мужчины – 2-10 мм/ч, женщины – 2 -15 мм/ ч. При наличии воспалительных процессов СОЭ увеличивается.
    Снижение нормы гемоглобина может стать сигналом о том, что у человека – болезнь – малокровие – анемия.
    ?Чем грозит анемия – уменьшение кол-ва эритроцитов? - ответы учеников -недостаток кислорода.
    Белок гемоглобин содержится в эритроцитах.
    ?Где образуются эритроциты? – ответы учеников - в красном костном мозге.
    Если костный мозг не работает – не образуются эритроциты – болезнь – операция по пересадке костного мозга.
    В красном костном мозге образуются и лейкоциты и тромбоциты. Дозревают в лимфатических узлах и тимусе (вилочковой железе).
    Продолжительность жизни эритроцитов – 4 мес.
    Лейкоцитов – от нескольких часов до 3 -5 суток
    Тромбоцитов – 5 -7 суток
    Количество крови в организме человека 5-6 литров. Потеря ~ 70% (3,5 л) грозит смертью человеку
    ?Какое есть средство от смерти от потери крови? – ответы учеников - переливание крови.
    Идея о вливании крови в кровеносные сосуды родилась в 17 веке после открытия Гарвеем закона кровообращения.
    Сначала пытались использовать кровь животных. Обескровленному умирающему юноше влили кровь ягненка. Вливание чужеродной крови вызвало тяжелую реакцию, однако, юноша выздоровел.
    Стали проделывать подобные опыты с кровью животных, больные погибали.
    В конце 18 века было доказано, что для переливания крови человеку надо использовать только кровь человека.
    Первое в мире переливание крови человеку от человека – в 1919 г. В Англии.
    Однако, выяснили, что и это не всегда безопасно. Некоторые пациенты гибли.
    ?Почему? ответы учеников.
    На эти вопросы ответили в начале 20 века ученые К. Ландштейнер и я. Янский.
    Они установили, что по биологическим свойствам крови люди делятся на 4 группы.
    Запись в тетрадь:
    Люди, дающие кровь – доноры, получающие кровь – реципиенты.
    Когда кровь донора и реципиента не совпадает по группе, то эритроциты склеиваются, собираясь в кучки, или разрушаются при попадании в плазму или сыворотку крови другой группы. Это приводит к гибели больного.
    В крови каждого человека есть антигены, которые принимают эритроциты крови другой группы, как инородные тела, которые необходимо уничтожить.
    Самостоятельная работа с учебником.
    Прочитайте раздел «Переливание крови» на стр. 97, выпишите группы крови в два столбика и, покажите стрелочками, какую группу в какую можно переливать.
    Проверяем, записывая правильную схему на доске:
    ДОНОРРЕЦИПИЕНТ
    II
    IIII
    IIIIII
    IVIV
    В течение всей жизни группа крови не меняется.
    ?Кто знает свою группу крови? - ответы учеников
    ?Какие группы можно вам переливать? - ответы учеников
    ?Кому вы можете стать донором? - ответы учеников
    У многих людей в эритроцитах есть белок, который получил название – резус-фактор. Обозначается буквами Rh+
    Впервые был обнаружен у макак-резус, отсюда и название.
    Rh+ - кровь, имеющая этот белок в эритроцитах
    Rh- - кровь, не имеющая в эритроцитах этого белка
    Если человеку с резус-отрицательной кровью влить резус-положительную, то в организме начнется выработка антител против этого белка.
    Если повторно перелить такую кровь – начнется резус-конфликт – смерть.
    Резус-конфликт может произойти и в случае, когда мать резус-отрицательна, отец – резус-положителен.
    Если плод получится резус-положительным, то в организме матери начнут вырабатываться антитела, разрушающие положительный резус-белок. Если беременность первая и антител не много – родится нормальный ребенок
    При повторной беременности – произойдет резус-конфликт, разрушение эритроцитов ребенка – гибель плода или болезнь плода.
    Поэтому, сразу после рождения делают анализ на наличие антител к резус-фактору и, если он есть, новорожденному делают обменное переливание.
    Закрепление:
    Почему нельзя беспрепятственно переливать кровь от одного человека другому?
    Какие группы крови имеются у человека и как их можно переливать?
    Почему возникает резус-конфликт?
    Рефлексия:
    Домашнее задание: стр. 97 - 99, вопросы после параграфа устно

    Группы крови. Переливание крови»

    Студент должен

    Иметь представление:

    Определение СОЭ,

    О причинах АВО-конфликта, резус конфликта,

    О гемотрансфузионном шоке,

    Об индивидуальной и биологической совместимости крови донора и реципиента.

    Механизм свертывания крови,

    Скорость оседания эритроцитов,

    Гемолиз, его виды

    Группы крови,

    Резус-фактор его локализация,

    Реакция агглютинации,

    Определение групп крови.

    План лекции

    1. Свертывание крови

    2. Вещества, ускоряющие свертывание крови и вещества, замедляющие этот процесс.

    3. Скорость оседание эритроцитов.

    4. Гемолиз; виды гемолиза.

    5. Группы крови.

    6. Резус фактор, его значение.

    7.Переливание крови, донорство.

    8. Определение групп крови.

    1. Свертывание крови

    Свертывание крови является защитной реакцией организма. При ранении и вытекании крови из сосудов, она из жидкого состояния переходит в желеобразное. Образующийся сгусток закупоривает поврежденные сосуды и предотвращает потерю значительного количества крови. Свертывание крови это сложный ферментативный процесс. Выделяют два механизма свертывания:

    Тромбоцитарный

    Гемокоагуляционный

    При повреждении сосуда на чужеродную поверхность начинают наслаиваться тромбоциты – прилипать друг к другу, склеиваться между собой, образуя тромб. Тромб слабо связан с сосудистой стенкой и в любой момент может оторваться. К этому процессу присоединяется второй механизм – гемокоагуляционный, который проходит три стадии. В первой стадии из тромбоцитов и тканевых клеток освобождается предшественник тромбопластина, который, взаимодействуя с факторами плазмы крови, превращается в активный тромбопластин. Для его образования необходимой наличие Са + , плюс факторы плазмы крови.

    Во второй стадии активный тромбопластин способствует превращению протромбина в активный фермент – тромбин. Протромбин является белком плазмы, образуется он в печени. Для его синтеза необходимо наличие витамина К, который всасывается из кишечника, при обязательном участии желчи.

    В третьей стадии под действием тромбина растворимый белок плазмы –фибриноген превращается в нерастворимый фибрин. Фибрин выпадает в виде густого сплетения тончайших нитей. Между нитями оседают форменные элементы крови. Затем нити фибрина сокращаются, сгусток уплотняется. Происходит ретракция и из сгустка выдавливается сыворотка. Образуется тромб. Выпушенная из сосудов кровь начинает свертываться через 3-4 минуты, а через 5-6 минут превращается в плотный, сгусток.

    В медицинской практике применяются вещества, ускоряющие и замедляющие процесс свертывания крови. Вещества, ускоряющие процесс свертывания крови называются коагулянтами. К ним относятся: викасол, 10% раствор хлористого кальция, желатин, аминокапроновая кислота и др. Вещества, замедляющие свертываемость крови называются антикоагулянтами. К ним относятся: гепарин, синкулар, лимоннокислый натрий и др. Гемофилия-заболевание, при котором понижена свертываемость крови, сопровождается недостатком или отсутствием антигемофилического фактора. Бывает у мужчин. Заболевание наследственное.



    2. Скорость оседания эритроцитов(СОЭ)

    Если в пробирку с антикоагулянтом поместить кровь, то мы наблюдаем оседание эритроцитов. Для этого взятую кровь смешивают с лимоннокислым натрием, помещают в градуированную пипетку и оставляют на один час.

    Образуются слои: внизу эритроциты, затем тромбоциты, белки, над ними лейкоциты и наверху плазма. У мужчин СОЭ равна 3-12 мм /час, у женщин 7-12мм / час, у новорожденных 0,5мм /час, у беременных 25мм /час и более. СОЭ увеличивается при заболеваниях и воспалительных процессах.

    Гемолиз.

    Гемолизом называют нарушение оболочки эритроцитов и выход гемоглобина в окружающий раствор. Гемолизированная кровь становится лаковой, то-есть прозрачной, вследствие разрушения эритроцитов. Различают гемолиз осмотический, химический, биологический и механический. Осмотический гемолиз происходит в гипотоническом растворе, то-есть в растворе, осмотическое давление которого ниже, чем в эритроците. При этом вода поступает в эритроциты, они набухают и лопаются. Химический гемолиз происходит под влиянием химических веществ: бензина, эфира, аммиака, хлороформа. Все эти вещества, являясь жирорастворителями, растворяют оболочку эритроцитов. Биологический гемолиз может происходить после укуса змей, пчел, скорпионов и др. Механический гемолиз возможен при встряхивании крови при перевозке. Гемолизированная кровь не пригодна для переливания.

    3. Группы крови

    В 1901 ученым Янским было выяснено, что в крови имеются особые белковые вещества: в эритроцитах агглютиногены А и В, а в плазме -агглютинины а и b. Агглютинация (склеивание эритроцитов) и гемолиз происходит только в случае, если встречаются одноименные агглютинины и агглютиногены. На основании этого он разделил людей на 4 группы. Первая группа- 0 нет агглютиногенов, а в плазме содержатся агглютинины а и р.

    Вторая группа-А, содержит агглютиноген А, а в плазме агглютинин |b. Третья группа-В, содержит агглютиноген В, а в плазме агглютинин а. Четвертая группа - АВ, содержит агглютиногены А и В, а в плазме агглютинины отсутствуют.

    Кроме основных агглютиногенов А и В в эритроцитах могут быть дополнительные, а в частности так называемый резус-фактор. Он был впервые обнаружен в крови обезьяны макаки-резуса. Примерно 85% людей содержат в крови резус-фактор, такая кровь называется резус-положительной. Кровь, в которой отсутствует резус - фактор называется резус-отрицательной. Резус-фактор играет особую роль для течения беременности. Если у матери в крови отсутствует резус-фактор, а у отца он есть. Плод может унаследовать от отца резус-фактор и оказаться резус-положительный. Кровь плода вызывает образование в крови матери антирезусагглютиниов. Иммунизация происходит медленно, поэтому первый ребенок может родиться нормальным. При повторных беременностях резус-агглютинины матери проникают через плаценту в кровяное русло плода, склеивают и разрушают его эритроциты. Происходит либо внутриутробная гибель плода, либо ребенок рождается с гемолитической желтухой. В настоящее время разработаны методы, предотвращающие иммунологический конфликт матери и ребенка в 93-97% случаев. Групповые свойства крови передаются по наследству и не меняются в течение жизни.

    4 Переливание крови

    До открытия групп крови, переливание не всегда заканчивалось успешно, т.к. эритроциты донора (человека дающего кровь) не совпадали с плазмой реципиента (человека, получающего кровь) и происходила реакция агглютинации. В результате возникало тяжелое состояние называемое гемотрансфузионным шоком (трансфузия - переливание). Кровь одного человека можно переливать другому только с учетом ее групповой принадлежности. Особое значение перед переливанием придают агглютиногенам эритроцитов, т.к. они в крови реципиента могут встретиться с родственными агглютининами и склеиться. Агглютининам переливаемой крови-крови донора не придают особого значения, т.к. в крови реципиента они значительно разводятся и теряют свою способность агглютинировать эритроциты реципиента.

    На основании этого кровь 1 группы, не содержащая агглютиногенов может быть перелита людям с любой группой крови. Поэтому людей с 1 группой крови считают универсальными донорами. Людей, имеющих 4 группу, не содержащую агглютининов, считают универсальными реципиентами.

    Группу крови определяют с помощью стандартных сывороток. Для определения резус-фактора используют стандартную сыворотку антирезус.

    Кровь является лечебным средством. Ни одна крупная операция не проводится без переливания крови. Переливание крови врачебная процедура. Даже, если известны группы крови донора и реципиента. Перед переливанием проверяют их группы крови повторно и проверяют кровь на совместимость, чтобы предупредить развитие гематрансфузионного шока.

    Литература:

    1. Гайворонский И В., Ничипорук Г.И., Гайворонский А.И. «Анатомия и физиология человека» Москва 2009 год.

    2. Федюкович Н.И. Анатомия и физиология человека. – Ростов-на-Дону: Феникс, 2001.

    Контрольные вопросы

    1. Назовите основные механизмы свертывания крови, её стадии.

    2. Назовите основные коагулянты, антикоагулянты.

    3. Чем характеризуется гемофилия?

    4. Чему равняется СОЭ у мужчин и женщин?

    5. Реакция агглютинации

    6. Группы крови.

    7. Резус-фактор,его значение.

    8. Почему при переливании крови может возникнуть гемотрансфузионный шок?

    Кровь - это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт различных веществ в пределах организма и обеспечивающая питание и обмен ве­ществ всех клеток тела. Красный цвет крови придает гемоглобин, содер­жащийся в эритроцитах.

    У многоклеточных организмов большинство клеток не имеет непо­средственного контакта с внешней средой, их жизнедеятельность обеспе­чивается наличием внутренней среды (кровь, лимфа, тканевая жидкость). Из нее они получают необходимые для жизни вещества и выделяют в нее же продукты метаболизма. Для внутренней среды организма характерно относительное динамическое постоянство состава и физико-химических свойств, которое называется гомеостазом. Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями и поддерживающим гомеостаз, являются гисто-гематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани, клеточных липопротеидных мембран.

    В понятие "система крови" входят: кровь, органы кроветворения (красный костный мозг, лимфатические узлы и др.), органы кроворазрушения и механизмы регуляции (регулирующий нейрогумо-ральный аппарат). Система крови представляет собой одну из важнейших систем жизнеобеспечения организма и выполняет множество функций. Остановка сердца и прекращение движения крови немедленно приводит организм к гибели.

    Физиологические функции крови:

    1) дыхательная - перенос кислорода от легких к тканям и углекисло­го газа от тканей к легким;

    2) трофическая (питательная) - доставка питательных веществ, вита­минов, минеральных солей и воды от органов пищеварения к тканям;

    3) экскреторная (выделительная) - удаление из тканей конечных про­дуктов метаболизма, лишней воды и минеральных солей;

    4) терморегуляторная - регуляция температуры тела путем охлаж­дения энергоемких органов и согревания органов, теряющих тепло;

    5) гомеостатическая - поддержание стабильности ряда констант го-меостаза: рН, осмотического давления, изоионии и т.д.;

    6) регуляция водно-солевого обмена между кровью и тканями;

    7) защитная - участие в клеточном (лейкоциты), гуморальном (анти­тела) иммунитете, в свертывании для прекращения кровотечения;

    8) гуморальная регуляция - перенос гормонов, медиаторов и др.;

    9) креаторная (лат. creatio - созидание) - перенос макромолекул, осу­ществляющих межклеточную передачу информации с целью восстановле­ния и поддержания структуры тканей.

    Общее количество крови в организме взрослого человека в норме составляет 6-8% массы тела и равно примерно 4,5-6 л. В покое в сосуди­стой системе находится 60-70% крови. Это так называемая циркулирую­щая кровь. Другая часть крови (30-40%) содержится в специальных кровя­ных депо. Это так называемая депонированная, или резервная, кровь.



    Кровь состоит из жидкой части - плазмы и взвешенных в ней клеток -форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов в циркулирующей крови приходится 40-45%, на долю плазмы - 55-60%. В депонированной крови наоборот: форменных элементов - 55-60%, плазмы - 40-45%. Объемное соотношение форменных элементов и плазмы (или часть объема крови, приходящаяся на долю эритроцитов) называется гематокритом (греч. haema, haematos - кровь, kritos - отдельный, определенный). Относительная плотность (удельный вес) цельной крови равен 1,050-1,060, эритроцитов- 1,090, плазмы- 1,025-1,034. Вязкость цельной крови по отношению к воде составляет около 5, а вязкость плазмы - 1,7-2,2. Вязкость крови обусловлена наличием белков и особенно эритроцитов.

    Плазма содержит 90-92% воды и 8-10% сухого остатка, главным об­разом белков (7-8%) и минеральных солей (1%). Белки плазмы (их более 30) включают 3 основные группы:

    1) альбумины (около 4,5%) обеспечивают онкотическое давление, связывают лекарственные вещества, витамины, гормоны, пигменты;

    2) глобулины (2-3%) обеспечивают транспорт жиров, липоидов в составе липопротеинов, глюкозы - в составе гликопротеинов, меди, железа - в составе трансферрина, выработку антител, а также α-- и β – агглютининов крови;

    3) фибриноген (0,2-0,4%) участвует в свертывании крови.

    Небелковые азотсодержащие соединения плазмы включают: ами­нокислоты, полипептиды, мочевину, креатинин, продукты распада нук­леиновых кислот и т.д. Половина общего количества небелкового азота в плазме (так называемого остаточного азота) приходится на долю мочеви­ны. В норме остаточного азота в плазме содержится 10,6-14,1 ммоль/л, а мочевины - 2,5-3,3 ммоль/л. В плазме находятся также безазотистые органические вещества: глюкоза 4,44-6,67 ммоль/л, нейтральные жиры, липоиды. Минеральные вещества плаз­мы составляют около 1% (катионы Nа + , К + , Са 2+ , анионы С1 - , НСО 3 - , НРО 4 -)- В плазме содержится также более 50 различных гормонов и фер­ментов.



    Осмотическое давление - это давление, которое оказывают раст­воренные в плазме вещества. Оно зависит в основном от содержащихся в ней минеральных солей и составляет в среднем около 7,6 атм., что соот­ветствует температуре замерзания крови, равной -0,56 - -0,58°С. Около 60% всего осмотического давления обусловлено солями натрия. Растворы, осмотическое давление которых такое же, как у плазмы, называются изо­тоническими, или изоосмотическими. Растворы с большим осмотическим давлением называются гипертоническими, а с меньшим - гипотонически­ми. 0,85-0,9% раствор NaCl называется физиологическим. Однако он не является полностью физиологическим, так как в нем нет других компонен­тов плазмы.

    Онкотическое (коллоидно-осмотическое) давление - это часть осмо­тического давления, создаваемая белками плазмы (т.е. их способность притягивать и удерживать воду). Оно равно 0,03-0,04 атм. (25-30 мм рт.ст.), т.е. 1/200 осмотического давления плазмы (равного 7,6 атм.), и оп­ределяется более чем на 80% альбуминами. Постоянство осмотического и онкотического давления крови является жестким параметром гомеостаза, без которого невозможна нормальная жизнедеятельность организма.

    Реакция крови (рН) обусловлена соотношением в ней водородных (Н +) и гидроксильных (ОН -) ионов. Она также является одной из важней­ших констант гомеостаза, так как только при рН 7,36-7,42 возможно опти­мальное течение обмена веществ. Крайними пределами изменения рН, совместимыми с жизнью, являются величины от 7 до 7,8. Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную - алкалозом. Поддержание постоянства реакции крови в пределах рН 7,36-7,42 (слабо­щелочная реакция) достигается за счет следующих буферных систем кро­ви:

    1) буферной системы гемоглобина - самой мощной; на ее долю при­ходится 75% буферной емкости крови;

    2) карбонатной буферной системы (Н 2 СО 3 + NaНСО 3) - занимает по мощности второе место после буферной системы гемоглобина;

    3) фосфатной буферной системы, образованной дигидрофосфатом (NаН 2 РО 4) и гидрофосфатом (Na 2 НРО 4) натрия;

    4) белков плазмы.

    В поддержании рН крови участвуют также легкие, почки, потовые железы. Буферные системы имеются и в тканях. Главными буферами тка­ней являются клеточные белки и фосфаты.

    2. Эритроцит (греч. erithros - красный, cytus - клетка) - безъя­дерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска диаметром 7-8 мкм, толщиной 1-2,5 мкм. Они очень гибки и эластичны, легко деформируются и проходят через крове­носные капилляры с диаметром меньшим, чем диаметр эритроцита. Обра­зуются в красном костном мозге, разрушаются в печени и селезенке. Про­должительность жизни эритроцитов составляет 100-120 дней. В начальных фазах своего развития эритроциты имеют ядро и называются ретикулоцитами. По мере созревания ядро замещается дыхательным пигментом - ге­моглобином, составляющим 90% сухого вещества эритроцитов.

    В норме в 1 мкл (мм 3) крови у мужчин содержится 4-5х10¹²/л эритро­цитов, у женщин - 3,7-4,7 х10¹²/л, у новорожденных достигает 6 х10¹²/л. Увели­чение количества эритроцитов в единице объема крови называется эритроцитозом (полиглобулией, полицитемией), уменьшение - эритропенией. Общая площадь поверхности всех эритроцитов взрослого человека состав­ляет 3000-3800 м 2 , что в 1500-1900 раз превышает поверхность тела. Функции эритроцитов:

    1) дыхательная - за счет гемоглобина, присоединяющего к себе О 2 и СО 2 ;

    2) питательная - адсорбирование на своей поверхности аминокислот и доставка их к клеткам организма;

    3) защитная - связывание токсинов находящимися на их поверх­ности антитоксинами и участие в свертывании крови;

    4) ферментативная - перенос различных ферментов: угольной ангидразы (карбоангидразы), истинной холинэстеразы и др.;

    5) буферная - поддержание с помощью гемоглобина рН крови в пре­делах 7,36-7,42;

    6) креаторная - переносят вещества, осуществляющие межклеточные взаимодействия, обеспечивающие сохранность структуры органов и тка­ней. Например, при повреждении печени у животных эритроциты начина­ют транспортировать из костного мозга в печень нуклеотиды, пептиды, аминокислоты, восстанавливающие структуру этого органа.

    Гемоглобин является основной составной частью эритроцитов и обеспечивает:

    1) дыхательную функцию крови за счет переноса О 2 от легких к тка­ням и СО 2 от клеток к легким;

    2) регуляцию активной реакции (рН) крови, обладая свойствами сла­бых кислот (75% буферной емкости крови).

    По химической структуре гемоглобин является сложным белком -хромопротеидом, состоящим из белка глобина и простетической группы тема (четырех молекул). Гем имеет в своем составе атом железа, способ­ный присоединять и отдавать молекулу кислорода. При этом валентность железа не изменяется, т.е. оно остается двухвалентным.

    В крови человека должно содержаться в идеале 166,7 г/л гемоглобина. Фактически у мужчин в норме содержится гемоглобина в среднем 145 г/л с колебаниями от 130 до 160 г/л, у женщин - 130 г/л с колебаниями от 120 до 140 г/л. Об­щее количество гемоглобина в пяти литрах крови у человека составляет 700-800 г. 1 г гемоглобина связывает 1,34 мл кислорода. Разница в содер­жании эритроцитов и гемоглобина у мужчин и женщин объясняется сти­мулирующим действием на кроветворение мужских половых гормонов и тормозящим влиянием женских половых гормонов. Гемоглобин синтези­руется эритробластами и нормобластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент - билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемо­глобина, т.е. около 1% гемоглобина, находящегося в крови.

    В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа - гем идентична этой же группе молекулы гемоглобина крови, а белковая часть - глобин обладает меньшей молекулярной массой, чем белок гемоглобина. Миоглобин связывает до 14% общего количества кислорода в организме. Его на­значение - снабжение кислородом работающей мышцы в момент сокра­щения, когда кровоток в ней уменьшается или прекращается.

    В норме гемоглобин содержится в крови в виде трех физиологи­ческих соединений:

    1) оксигемоглобин (НbО 2) - гемоглобин, присоединивший О 2 ; на­ходится в артериальной крови, придавая ей ярко-алый цвет;

    2) восстановленный, или редуцированный, гемоглобин, дезоксиге-моглобин (Нb) - оксигемоглобин, отдавший О 2 ; находится в венозной кро­ви, которая имеет более темный цвет, чем артериальная;

    3) карбгемоглобин (НbСО 2) - соединение гемоглобина с углекислым газом; содержится в венозной крови.

    Гемоглобин способен образовывать и патологические соединения.

    1) Карбоксигемоглобин (НbСО) - соединение гемоглобина с угар­ным газом (окисью углерода); сродство железа гемоглобина к угарному газу превышает его сродство к О 2 , поэтому даже 0,1% угарного газа в воз­духе ведет к превращению 80% гемоглобина в карбоксигемоглобин, кото­рый неспособен присоединять О 2 , что является опасным для жизни. Сла­бое отравление угарным газом - обратимый процесс. Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз.

    2) Метгемоглобин (МеtHb) - соединение, в котором под влиянием сильных окислителей (анилин, бертолетова соль, фенацетин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.

    3. Лейкоцит или белое кро­вяное тельце, - это бесцветная ядерная клетка, не содержащая гемоглоби­на. Размер лейкоцитов - 8-20 мкм. Образуются в красном костном мозге, лимфатических узлах, селезенке, лимфатических фолликулах. В 1 мкл (мм 3) крови человека в норме содержится 4-9 х109 лейкоцитов. Увеличе­ние количества лейкоцитов в крови называется лейкоцитозом, уменьшение - лейкопенией. Продолжительность жизни лейкоцитов составляет в сред­нем 15-20 дней, лимфоцитов - 20 и более лет. Некоторые лимфоциты жи­вут на протяжении всей жизни человека.

    Лейкоциты делят на две группы: гранулоциты (зернистые) и аграну-лоциты (незернистые). В группу гранулоцитов входят нейтрофилы, эози-нофилы и базофилы, а в группу агранулоцитов - лимфоциты и моноциты. При оценке изменений числа лейкоцитов в клинике решающее значение придается не столько изменениям их количества, сколько изменениям взаимоотношений между различными видами клеток. Процентное соот­ношение отдельных форм лейкоцитов в крови называется лейкоцитарной формулой, или лейкограммой. В настоящее время она имеет следующий вид (табл.6).

    У здоровых людей лейкограмма довольно постоянна, и ее изменения служат признаком различных заболеваний. Так, например, при острых воспалительных процессах наблюдается увеличение количества нейтрофилов (нейтрофилия), при аллергических заболеваниях и глистной болез­ни - эозинофилия, при вялотекущих хронических инфекциях (туберкулез, ревматизм и др.) - лимфоцитоз.

    По нейтрофилам можно определить пол человека. При наличии жен­ского генотипа 7 из 500 нейтрофилов содержат особые, специфические для женского пола образования, называемые "барабанными палочками" (круг­лые выросты диаметром 1,5-2 мкм, соединенные с одним из сегментов ядра посредством тонких хроматиновых мостиков).

    Лейкоцитарная формула у детей (%)

    Возраст лейкоциты х10* 9/л нейтрофилы лимфоциты моноциты эозинофилы базофилы
    палочк. сегмент.
    5 суток 12 (9-15) 1-5 35-55 30-50 6-11 1-4 0-1
    10 сут. 11 (8,5-14) 1-4 27-47 40-60 6-14 1-5 0-1
    1 месяц 10 (8-12) 1-5 17-30 45-60 5-12 1-5 0-1
    1 год 9 (7-11) 1-5 20-35 45-65 5-12 1-4 0-1
    4-5 лет 8 (6-10) 1-4 35-55 35-55 4-6 1-4 0-1
    10 лет 7,5 (6-10) 1-4 40-60 30-45 4-6 1-4 0-1
    15 лет 1-4 40-60 30-45 3-7 1-4 0-1

    Все виды лейкоцитов обладают тремя важнейшими физиологичес­кими свойствами:

    1) амебовидной подвижностью - способностью активно передви­гаться за счет образования ложноножек (псевдоподий);

    2) диапедезом - способностью выходить (мигрировать) через непо­врежденную стенку сосуда;

    3) фагоцитозом - способностью окружать инородные тела и микро­организмы, захватывать их в цитоплазму, поглощать и переваривать. Это явление было подробно изучено и описано И.И.Мечниковым (1882).

    Лейкоциты выполняют множество функций:

    1) защитная - борьба с чужеродными агентами; они фагоцитируют (поглощают) чужеродные тела и уничтожают их;

    2) антитоксическая - выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов;

    3) выработка антител, обеспечивающих иммунитет, т.е. невос­приимчивость к заразным болезням;

    4) участвуют в развитии всех этапов воспаления, стимулируют вос­становительные (регенеративные) процессы в организме и ускоряют за­живление ран;

    5) ферментативная - они содержат различные ферменты, необхо­димые для осуществления фагоцитоза;

    6) участвуют в процессах свертывания крови и фибринолиза путем выработки гепарина, гнетамина, активатора плазминогена и т.д.;

    7) являются центральным звеном иммунной системы организма, осуществляя функцию иммунного надзора ("цензуры"), защиты от всего чужеродного и сохраняя генетический гомеостаз (Т-лимфоциты);

    8) обеспечивают реакцию отторжения трансплантата, уничтожение собственных мутантных клеток;

    9) образуют активные (эндогенные) пирогены и формируют лихора­дочную реакцию;

    10) несут макромолекулы с информацией, необходимой для управле­ния генетическим аппаратом других клеток организма; путем таких меж­клеточных взаимодействий (креаторных связей) восстанавливается и под­держивается целостность организма.

    4 . Тромбоцит или кровяная пластинка, - участвующий в свертывании крови форменный эле­мент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диа­метром 2-5 мкм. Тромбоциты образуются в красном костном мозге из ги­гантских клеток - мегакариоцитов. В 1 мкл (мм 3) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбо­цитов в периферической крови называется тромбоцитозом, уменьшение - тромбоцитопенией. Продолжительность жизни тромбоцитов составляет 2- 10 дней.

    Основными физиологическими свойствами тромбоцитов являются:

    1) амебовидная подвижность за счет образования ложноножек;

    2) фагоцитоз, т.е. поглощение инородных тел и микробов;

    3) прилипание к чужеродной поверхности и склеивание между со­бой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;

    4) легкая разрушаемость;

    5) выделение и поглощение различных биологически активных ве­ществ типа серотонина, адреналина, норадреналина и др.;

    Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

    Функции тромбоцитов:

    1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);

    2) участвуют в остановке кровотечения (гемостазе) за счет при­сутствующих в них биологически активных соединений;

    3) выполняют защитную функцию за счет склеивания (агглютина­ции) микробов и фагоцитоза;

    4) вырабатывают некоторые ферменты (амилолитические, протеоли-тические и др.), необходимые для нормальной жизнедеятельности тромбо­цитов и для процесса остановки кровотечения;

    5) оказывают влияние на состояние гистогематических барьеров ме­жду кровью и тканевой жидкостью путем изменения проницаемости сте­нок капилляров;

    6) осуществляют транспорт креаторных веществ, важных для сохра­нения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.

    Скорость (реакция) оседания эритроцитов (сокращенно СОЭ) - показатель, отражающий изменения физико-химических свойств крови и измеряемой величиной столба плазмы, освобождающейся от эритроцитов при их оседании из цитратной смеси (5% раствор цитрата натрия) за 1 час в специальной пипетке прибора Т.П.Панченкова.

    В норме СОЭ равна:

    у мужчин - 1-10 мм/час;

    у женщин - 2-15 мм/час;

    новорожденные - от 2 до 4 мм/ч;

    дети первого года жизни - от 3 до 10 мм/ч;

    дети возрастом 1-5 лет - от 5 до 11 мм/ч;

    дети 6-14 лет - от 4 до 12 мм/ч;

    старше 14 лет - для девочек - от 2 до 15 мм/ч, а для мальчиков - от 1 до 10 мм/ч.

    у беременных женщин перед родами - 40-50 мм/час.

    Увеличение СОЭ больше указанных величин является, как правило, признаком патологии. Величина СОЭ зависит не от свойств эритроцитов, а от свойств плазмы, в первую очередь от содержания в ней крупномолеку­лярных белков - глобулинов и особенно фибриногена. Концентрация этих белков возрастает при всех воспалительных процессах. При беременности содержание фибриногена перед родами почти в 2 раза больше нормы, по­этому СОЭ достигает 40-50 мм/час.

    Лейкоциты имеют свой, независимый от эритроцитов режим оседа­ния. Однако скорость оседания лейкоцитов в клинике во внимание не при­нимается.

    Гемостаз (греч. haime - кровь, stasis - неподвижное состояние) - это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:

    1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;

    2) коагуляционный гемостаз (свертывание крови).

    Первый механизм способен самостоятельно за несколько минут оста­новить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:

    1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;

    2) образования, уплотнения и сокращения тромбоцитарной пробки, приводящей к полной остановке кровотечения.

    Второй механизм остановки кровотечения - свертывание крови (ге-мокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа. Осуществляется в три фа­зы:

    I фаза - формирование протромбиназы;

    II фаза - образование тромбина;

    III фаза - превращение фибриногена в фибрин.

    В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, при­нимает участие 15 плазменных факторов: фибриноген, протромбин, ткане­вой тромбопластин, кальций, проакцелерин, конвертин, антигемофильные глобулины А и Б, фибринстабилизирующий фактор, прекалликреин (фак­тор Флетчера), высокомолекулярный кининоген (фактор Фитцджеральда) и др.

    Большинство этих факторов образуется в печени при участии вита­мина К и является проферментами, относящимися к глобулиновой фрак­ции белков плазмы. В активную форму - ферменты они переходят в про­цессе свертывания. Причем каждая реакция катализируется ферментом, образующимся в результате предшествующей реакции.

    Пусковым механизмом свертывания крови служит освобождение тромбопластина поврежденной тканью и распадающимися тромбоцитами. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.

    Кровяной сгусток образуют сеть из волокон нерастворимого фибрина и опутанные ею эритроци­ты, лейкоциты и тромбоциты. Прочность обра­зовавшегося кровяного сгустка обеспечивается фактором XIII - фибрин-стабилиризующим фактором (ферментом фибриназой, синтезируемой в печени). Плазма крови, лишенная фибриногена и некоторых других ве­ществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

    Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

    Кроме свертывающей системы, в организме имеются одновременно еще две системы: противосвертывающая и фибринолитическая.

    Противосвертывающая система препятствует процессам внутрисосудистого свер­тывания крови или замедляет гемокоагуляцию. Главным антикоагулянтом этой системы является гепарин, выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами и тканевыми базофилами (тучными клетками соединительной ткани). Количество базофильных лей­коцитов очень мало, зато все тканевые базофилы организма имеют массу 1,5 кг. Гепарин тормозит все фазы процесса свертывания крови, подавляет активность многих плазменных факторов и динамические превращения тромбоцитов. Выделяемый слюнными железами медицинских пиявок ги­рудин действует угнетающе на третью стадию процесса свертывания кро­ви, т.е. препятствует образованию фибрина.

    Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется протеолитическим ферментом плазмином (фибринолизином), который находится в плазме в виде профермента плазминогена. Для его превраще­ния в плазмин имеются активаторы, содержащиеся в крови и тканях, и ингибиторы (лат. inhibere - сдерживать, останавливать), тормозящие пре­вращение плазминогена в плазмин.

    Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

    Группы крови - совокупность признаков, характеризующих антигенную структуру эритроцитов и специфичность антиэритроцитарных антител, которые учитываются при подборе крови для трансфузий (лат. transfusio - переливание).

    В 1901 г. австриец К.Ландштейнер и в 1903 г. чех Я.Янский обна­ружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации (лат. agglutinatio - склеивание) с последующим их разрушением (гемолизом). Было установлено, что в эритроцитах имеются агглютиногены А и В, склеиваемые вещества гликолипидного строения, антигены. В плазме бы­ли найдены агглютинины α и β, видоизмененные белки глобулиновой фракции, антитела, склеивающие эритроциты. Агглютиногены А и В в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать. Агглютиноген А и агглю­тинин α, а также В и β называются одноименными. Склеивание эритроци­тов происходит в том случае, если эритроциты донора (человека, дающего кровь) встречаются с одноименными агглютининами реципиента (челове­ка, получающего кровь), т.е. А + α, В + β или АВ + αβ. Отсюда ясно, что в крови каждого человека находятся разноименные агглютиноген и агглю­тинин.

    Согласно классификации Я.Янского и К.Ландштейнера у людей име­ется 4 комбинации агглютиногенов и агглютининов, которые обозначают­ся следующим образом: I(0) - αβ., II(А) - А β, Ш(В) - В α и IV(АВ). Из этих обозначений следует, что у людей 1 группы в эритроцитах отсутствуют агглютиногены А и В, а в плазме имеются оба агглютинина α и β . У людей II группы эритроциты имеют агглютиноген А, а плазма - агглютинин β. К III группе относятся люди, у которых в эритроцитах находится агглютино­ген В, а в плазме - агглютинин α. У людей IV группы в эритроцитах со­держатся оба агглютиногена А и В, а агглютинины в плазме отсутствуют. Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы (схема 24).

    Как видно из схемы, людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. По­этому людей с I группой крови называют универсальными донорами. Лю­дям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно пе­реливать людям с кровью IV группы. Кровь людей II и III групп можно переливать людям с одноименной, а также с IV группой крови.

    Однако в настоящее время в клинической практике переливают толь­ко одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те­рапия). Это связано с тем, что:

    во-первых, при больших массивных переливаниях разведения агглю­тининов донора не происходит, и они склеивают эритроциты реципиента;

    во-вторых, при тщательном изучении людей с кровью I группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тя­желые осложнения. Поэтому людей с I группой крови, содержащих агглю­тинины анти-А и анти-В, сейчас называют опасными универсальными до­норами;

    в-третьих, в системе АВО выявлено много вариантов каждого агглю­тиногена. Так, агглютиноген А существует более, чем в 10 вариантах. Раз­личие между ними состоит в том, что А1 является самым сильным, а А2-А7 и другие варианты обладают слабыми агглютинационными свойствами. Поэтому кровь таких лиц может быть ошибочно отнесена к I группе, что может привести к гемотрансфузионным осложнениям при перелива­нии ее больным с I и III группами. Агглютиноген В тоже существует в не­скольких вариантах, активность которых убывает в порядке их нумерации.

    В 1930 г. К.Ландштейнер, выступая на церемонии вручения ему Но­белевской премии за открытие групп крови, предположил, что в будущем будут открыты новые агглютиногены, а количество групп крови будет расти до тех пор, пока не достигнет числа живущих на земле людей. Это предположение ученого оказалось верным. К настоящему времени в эрит­роцитах человека обнаружено более 500 различных агглютиногенов. Толь­ко из этих агглютиногенов можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные агг­лютиногены, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т.е значительно больше, чем людей на земном шаре. Это определяет удивительную антигенную неповторимость, и в этом смысле каждый че­ловек имеет свою группу крови. Данные системы агглютиногенов отлича­ются от системы АВО тем, что не содержат в плазме естественных агглю­тининов, подобных α- и β-агглютининам. Но при определенных условиях к этим агглютиногенам могут вырабатываться иммунные антитела - агг­лютинины. Поэтому повторно переливать больному кровь от одного и того же донора не рекомендуется.

    Для определения групп крови нужно иметь стандартные сыворотки, содержащие известные агглютинины, или цоликлоны анти-А и анти-В, содержащие диагностические моноклональные антитела. Если смешать каплю крови человека, группу которого надо определить, с сывороткой I, II, III групп или с цоликлонами анти-А и анти-В, то по наступившей агг­лютинации можно определить его группу.

    Несмотря на простоту метода в 7-10% случаев группа крови опреде­ляется неверно, и больным вводят несовместимую кровь. Для избежания такого осложнения перед переливанием крови обязательно проводят:

    1) определение группы крови донора и реципиента;

    2) резус-принадлежность крови донора и реципиента;

    3) пробу на индивидуальную совместимость;

    4) биологическую пробу на совместимость в процессе переливания: вливают вначале 10-15 мл донорской крови и затем в течение 3-5 минут наблюдают за состоянием больного.

    Перелитая кровь всегда действует многосторонне. В клинической практике выделяют:

    1) заместительное действие - замещение потерянной крови;

    2) иммуностимулирующее действие - с целью стимуляции защитных сил;

    3) кровоостанавливающее (гемостатическое) действие - с целью ос­тановки кровотечения, особенно внутреннего;

    4) обезвреживающее (дезинтоксикационное) действие - с целью уменьшения интоксикации;

    5) питательное действие - введение белков, жиров, углеводов в лег­коусвояемом виде.

    кроме основных агглютиногенов А и В, в эритроцитах могут быть другие дополнительные, в частности так называемый резус-агглютиноген (резус-фактор). Впервые он был найден в 1940 г. К.Ландштейнером и И.Винером в крови обезьяны макаки-резуса. У 85% людей в крови имеется этот же резус-агглютиноген. Такая кровь на­зывается резус-положительной. Кровь, в которой отсутствует резус-агглютиноген, называется резус-отрицательной (у 15% людей). Система резус имеет более 40 разновидностей агглютиногенов - О, С, Е, из которых наиболее активен О. Особенностью резус-фактора является то, что у лю­дей отсутствуют антирезус-агглютинины. Однако если человеку с резус-отрицательной кровью повторно переливать резус-положительную кровь, то под влиянием введенного резус-агглютиногена в крови выра­батываются специфические антирезус-агглютинины и гемолизины. В этом случае переливание резус-положительной крови этому человеку может вызвать агглютинацию и гемолиз эритроцитов - возникнет гемотрансфузионный шок.

    Резус-фактор передается по наследству и имеет особое значение для течения беременности. Например, если у матери отсутствует резус-фактор, а у отца он есть (вероятность такого брака составляет 50%), то плод может унаследовать от отца резус-фактор и оказаться резус-положительным. Кровь плода проникает в организм матери, вызывая образование в ее кро­ви антирезус-агглютининов. Если эти антитела поступят через плаценту обратно в кровь плода, произойдет агглютинация. При высокой концен­трации антирезус-агглютининов может наступить смерть плода и выки­дыш. При легких формах резус-несовместимости плод рождается живым, но с гемолитической желтухой.

    Резус-конфликт возникает лишь при высокой концентрации антирезус-гглютининов. Чаще всего первый ребенок рождается нормальным, по-скольку титр этих антител в крови матери возрастает относительно медленно (в течение нескольких месяцев). Но при повторной беременности резус-отрицательной женщины резус-положительным плодом угроза резус-конфликта нарастает вследствие образования новых порций антирезус-агглютининов. Резус-несовместимость при беременности встречается не очень часто: примерно один случай на 700 родов.

    Для профилактики резус-конфликта беременным резус-отрица­тельным женщинам назначают антирезус-гамма-глобулин, который ней­трализует резус-положительные антигены плода.