Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Становление патопсихологии
  • Как приготовить тортилью
  • Как приготовить тортилью
  • Система мононуклеарных фагоцитов. Систе́ма Мононуклеа́рных Фагоци́тов

    Система мононуклеарных фагоцитов. Систе́ма Мононуклеа́рных Фагоци́тов

    Обнаруживают

    Летки-предщ gкрасном костном мозге
    [ ромоноциты То же

    оноциты. В периферической крови г,

    акрофаги (обладающие большой фаго-

    (тарнои активностью): , ;

    клетки Купфера В печени

    альвеолярные макрофаги В легких

    свободные и фиксированные макрофаги В лимфатических узлах, селезенке

    плевральные и перитонеальные макрофаги В серозных полостях

    остеокласты В костной ткани

    клетки Микроглии В нервной ткани

    В иммунной системе различают центральные и периферические органы, эти же органы выполняют кроветворную функцию. У мле­копитающих к центральным органам относят красный костный мозг, тимус, у птиц - фабрициеву сумку; к периферическим - лим­фатические узлы, селезенку, лимфоидные образования пищевари­тельного тракта и органов дыхания, кровь, лимфу, микрофагальную систему и систему мононуклеарных фагоцитов (макрофаги).

    Красный костный мозг. В красном костном мозге непрерывно созревают эритроциты, лейкоциты, а также кровяные пластинки. Костный мозг появляется в мезенхиме на третьем месяце эмбрио­нального развития и начинает функционировать уже в самом ран­нем возрасте.

    В составе красного костного мозга различают основную миело-идную ткань, остов, жировую ткань, кровеносные сосуды, нервы. Кроветворная ткань заполняет ячейки губчатого вещества костей, их костномозговые участки и крупные гаверсовы каналы. С возра­стом красный костный мозг перерождается и замещается желтым костным мозгом, который заполняет костномозговые участки трубчатых костей и часть ячеек губчатого костного вещества. До конца жизни в желтом костном мозге в трубчатых костях остаются островки кроветворных клеток. Красный костный мозг как актив­ный кроветворный орган сохраняется в плоских и коротких кос­тях туловища (грудина, позвонки, черепные кости) и лишь отчас­ти в эпифизах трубчатых костей. По мере старения появляется слизистый (желатинозный) костный мозг вследствие перерожде­ния и атрофии жировой ткани костного мозга. Объем костного мозга приблизительно равен объему печени.

    Тимус. Центральный орган иммунной системы (зобная, или ви-лочковая, железа). Хорошо развит у зародышей и молодняка в первые годы жизни, с возрастом редуцируется, но не полностью, начиная с шейной части, а грудные доли остаются. В развитом со­стоянии различают непарную грудную долю, лежащую впереди сердца, и парную шейную долю, которая находится по бокам тра­хеи и может достигать гортани. Тимус - железа внутренней секре­ции, так как ее гормон тимозин влияет на дифференциацию лим­фоцитов.

    Селезенка. Орган с многообразной функцией. До рождения животного в ней образуются эритроциты и лейкоциты, через селе­зеночную вену они поступают в воротную вену и далее в каудаль-ную полую вену.



    Селезенка располагается слева от желудка. Форма ее разнооб­разная, чаще удлиненная (рис. 83). С поверхности орган покрыт серозной оболочкой, срастающейся с капсулой и переходящей на большую кривизну желудка, где формирует желудочно-селезеноч-ную связку. На висцеральной поверхности органа в области при­крепления связки имеются ворота селезенки. От капсулы отходят трабекулы (перекладины), образующие остов селезенки в виде

    Рис. 83. Селезенка:

    крупного рогатого скота; б ди; в - свиньи

    губки, заполненной паренхи­мой - белой и красной селезе­ночной пульпой (рис. 84).

    Белая пульпа построена из лимфоидной ткани, собранной вокруг артерий в виде шаров, называемых лимфатическими фолликулами селезенки или селезеночными тельцами. Ко­личество фолликулов у разных животных различное: у крупного рогатого скота их много и отчет­ливо отграничены от красной пульпы; у свиней и лошадей фол­ликулов меньше.

    В фолликулах различают нечетко разграниченные четыре зоны: периартериальную; центр размножения (светлый центр); мантий­ную и краевую, или маргинальную. Периартериальная зона зани­мает небольшой участок фолликула около артерии и образована главным образом из Т-лимфоцитов, попадающих сюда через ка­пилляры от артерий лимфатического узла, и интердигитирующих клеток. Полагают, что эти клетки адсорбируют антигены, посту­пающие сюда с кровью, и передают Т-лимфоцитам информацию о состоянии микроокружения; в дальнейшем они мигрируют в си­нусы краевой зоны через капилляры. Периартериальная зона яв­ляется аналогом тимусзависимой зоны лимфатических узлов.

    Центр размножения, или светлый центр, отражает функцио­нальное состояние фолликула и может значительно изменяться при инфекциях и интоксикациях. По строению и функциональ­ному назначению соответствует фолликулам лимфатического узла и является тимуснезависимым участком. Состоит из ретикуляр­ных клеток и скопления фагоцитов. На границе с мантийной зо­ной обнаруживаются плазмоциты.

    содержит плазмоциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направ­ленными ретикулярными волокнами.

    Краевая, или маргинальная, зона представляет собой переход­ную область между белой и красной пульпой, состоит преимуще­ственно из Т- и В-лимфоцитов и единичных макрофагов, окруже­на краевыми, или маргинальными, синусоидными сосудами с ще-левидными порами в стенке.

    Красная пульпа селезенки состоит из ретикулярной ткани с расположенными в ней клеточными элементами крови, придаю­щими ей красный цвет, и многочисленными кровеносными сосу­дами главным образом синусоидного типа. Количество венозных синусов в селезенке животных разных видов неодинаково. Их много у кроликов, собак, морских свинок, меньше у кошек, круп­ного и мелкого рогатого скота. Часть красной пульпы, располо­женная между синусами, называется селезеночными, или пуль-парными, тяжами.

    В красной пульпе имеются макрофаги - спленоциты, которые осуществляют фагоцитоз поврежденных эритроцитов. В результа­те расщепления гемоглобина поглощенных макрофагами эритро­цитов образуются и выделяются в кровь билирубин и содержащий железо трансферрин. Билирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровяного русла захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты. В селезенке депонируется кровь (до 16 %) и скапливаются тромбоциты.

    Особенностикровообращения селезенки: че­рез ворота селезенки входит селезеночная артерия, которая раз­ветвляется на трабекулярные артерии, переходящие в пульпарные артерии, которые разветвляются в красной пульпе. Артерия, про­ходящая через белую пульпу, называется центральной. Она отдает несколько капилляров и, выйдя в красную пульпу, разветвляется в виде кисточки на кисточковые артериолы, на конце которых име­ется утолщение - артериальная гильза, четко выраженная у сви­ней. Гильзы выполняют функцию сфинктеров, перекрывающих поток крови, так ка*в эндотелии эллипсоидных, или гильзовых, артериол обнаружены сократительные филаменты. Далее следуют короткие артериальные капилляры, большая часть которых впада­ет в венозные синусы (закрытое кровообращение), однако некото­рые могут непосредственно открываться в ретикулярную ткань красной пульпы (открытое кровообращение), а затем в венозные капилляры. Из них кровь доставляется в трабекулярные вены, а потом в селезеночную вену.

    Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровообра­щения. В стенке синусов в месте их перехода в вены имеются по­добия мышечных сфинктеров. При открытых артериальных и ве-

    нозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что спо­собствует концентрации в нем клеточных элементов. В случае за­крытия венозного и артериального сфинктеров кровь депонирует­ся в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную ткань. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток кап­сулы и трабекул ведут к опорожнению синусов и выходу крови в венозное русло. Отток венозной крови из пульпы селезенки со­вершается по системе вен. Селезеночная вена выходит через воро­та селезенки и впадает в воротную вену.

    Лимфатические узлы (нёбные, язычные, глоточные, тубарные, околонадгортанные у свиней), миндалины, пейеровы бляшки сли­зистой оболочки тонкого кишечника и одиночные солитарные фолликулы толстого отдела кишечника производят лимфоциты и макрофаги, выполняют защитную и иммунологическую функцию.

    Печень выполняет кроветворную функцию в эмбриональный период до тех пор, пока не развился красный костный мозг (в связи с формированием костного скелета), что происходит неза­долго до рождения животного.

    Контрольные вопросы и задания ,

    " 1. Какие органы относятся к системе кровообращения? ■}

    2. Расскажите о строении и цикле работы сердца. f

    3.Каким образом кровь движется по большому кругу кровообращения?

    4.Как устроен малый круг кровообращения? ,.".

    5.Какие форменные элементы крови вы знаете? Что такое плазма? »

    6.Охарактеризуйте схему процесса свертывания крови.

    7.Как используют кровь в промышленности? i

    8.Дайте характеристику артериям, капиллярам и венам.

    9.В чем заключаются общие закономерности хода и ветвления кровеносных сосудов?

    10.Какие артериальные магистрали имеются на голове, туловище, грудной и тазовой конечностях, каковы их основные ветви?

    11.Как формируется лимфатическая система, что такое лимфа?

    12.Какое строение имеют лимфатические сосуды и лимфатические узлы?

    13.Какие основные лимфатические узлы и лимфатические протоки имеются у животных?

    14.Какие органы относят к органам кроветворения, где они расположены, как устроены и в чем состоят их функции?

    15.Какие органы сосудистой системы выполняют защитную иммунологичес­кую функцию?

    Мононуклеарным фагоцитам (моноцитам и макрофагам) принадлежит важнейшая роль в иммунных реакциях, защите организма от инфекций, а также восстановлении и перестройке тканей. Не бывает человека, у которого отсутствовала бы эта линия клеток, поскольку макрофаги, по-видимому, необходимы для удаления примитивных тканей по мере их замещения новыми в процессе эмбрионального развития.

    Моноциты и различные формы тканевых макрофагов составляют систему мононуклеарных фагоцитов. Это именно система, так как все мононуклеары имеют общее происхождение, сходное строение и одинаковые функции (фагоцитоз).

    Основная локализация макрофагов в тканях :
    Печень (купферовские клетки).
    Легкие (интерстициальные и альвеолярные макрофаги).
    Соединительная ткань.
    Серозные полости (плевральные и перитонеальные макрофаги).
    Кости (остеокласты).

    Головной мозг (реактивные клетки микроглии).
    Селезенка, лимфатические узлы, костный мозг.
    Стенка кишечника.
    Грудное молоко.
    Плацента.
    Гранулемы (многоядерные гигантские клетки).

    Моноциты - циркулирующие в крови предшественники тканевых - развиваются в костном мозге быстрее и остаются в крови дольше нейтрофилов. Первый предшественник моноцита, монобласт, превращается в промоноцит, несколько более крупную клетку с цитоплазматическими гранулами и вдавленным ядром, состоящую из небольших глыбок хроматина, и, наконец, - в полностью развитый моноцит.

    Зрелый моноцит по своим размерам больше нейтрофила, и его цитоплазма заполнена гранулами, содержащими гидролитические ферменты. Превращение монобласта в зрелый моноцит крови занимает около 6 сут. Моноциты сохраняют некоторую способность к делению и после попадания в ткани подвергаются дальнейшей дифференцировке; в тканях они могут оставаться в течение нескольких недель и месяцев.

    В отсутствие воспаления моноциты , по-видимому, случайным образом попадают в ткани. Оказавшись там, они трансформируются в тканевые макрофаги, морфологические, а иногда и функциональные свойства которых зависят от конкретной ткани. Органоспецифические факторы влияют на дифференцировку моноцитов и определяют их метаболические и структурные особенности. В печени они превращаются в купферовские клетки, которые соединяют синусоиды, разделяющие соседние пластинки гепатоцитов.

    В легких они представлены крупными эллипсоидными альвеолярными макрофагами , в костях - остеокластами. Все макрофаги обладают по крайней мере тремя основными функциями - антигенпредставляющей, фагоцитарной и иммуномодулирующей, связанной с секрецией многих цитокинов. В очагах воспаления моноциты и макрофаги могут сливаться друг с другом, образуя многоядерные гигантские клетки - последняя стадия развития мононуклеарных фагоцитов. Под действием некоторых цитокинов моноциты крови дифференцируются в дендритные клетки, которые особенно эффективно представляют антигены лимфоцитам.

    Определяя систему мононуклеарных фагоцитов, следует отметить, что она объединяет связанные воедино монобласты, промоноциты, моноциты и различные по структуре тканевые макрофаги, которые ранее относили к ретикулоэндотелиальной системе. Макрофаги - это долгоживущие фагоцитарные клетки, об­ладающие большинством функций нейтрофилов. Они представляют собой важные секреторные клетки, которые с помощью своих рецепторов и продуктов секреции участвуют в целом комплексе иммунологических и воспалительных процессов, не опосредуемых нейтрофилами. Моноциты покидают кровеносное русло, через стенки сосудов путем диапедеза, причем значительно медленнее, чем нейтрофилы, их период полужизни составляет 12-24 ч.

    После того как моноциты покинут кровоток, они мигрируют в ткани, в ко­торых дифференцируются в макрофаги со специализированными функциями в соответствии с анатомической локализацией. Особыми функциями обладают альвеолярные макрофаги, звездчатые ретикулоэндотелиоциты печени (клетки Купфера), перитонеальные макрофаги, клетки микрогдии головного мозга, макро­фаги костного мозга, селезенки, лимфатических узлов, дендритные макрофаги. Факторы, секретируемые макрофагами, включают лизоцим, нейтральные протеазы, кислые гидролазы, аргиназу, ряд компонентов комплемента, ингибиторы фер­ментов (плазмин, a 2 -макроглобулин), связующие протеины (трансферрин, фибронектин, транскобаламин II), нуклеозиды, а также интерлейкин-1 (пироген). Последний выполняет многие важные функции, стимулирует гипоталамус, что сопровождается лихорадочной реакцией: мобилизует лейкоциты из костного моз­га, а также активирует лимфоциты и нейтрофилы. Другая группа продуктов, секретируемых макрофагами, включает реактивные метаболиты кислорода, био­логически активные липиды (метаболиты арахидоновой кислоты и факторы ак­тивации тромбоцитов), нейтрофильный хемоаттрактант, факторы регуляции син­теза белка других клеток, колониестимулирующий фактор относительно клеток костного мозга, факторы стимуляции фибробластов и пролиферации элементов микроциркуляции, а также факторы, ингибирующие процесс репликации лимфо­цитов, опухолей, вирусов и некоторых видов бактерий (листерии). Макрофаги функционируют и как клетки-эффекторы, участвующие в элиминации внутри­клеточных микроорганизмов. Их способность к слиянию с образованием гигант­ских клеток, которые формируются в гранулему в ответ на воспалительную ре­акцию, представляет собой важное звено в элиминации внутриклеточных микро­организмов; этот процесс может находиться под контролем у-интерферона.

    Макрофагам принадлежит важная роль в иммунном ответе. Они возбуж­дают антиген для представления его лимфоцитам, модулируют функцию лимфоидных клеток, участвуют в аутоиммунной реакции, удаляя иммунные комплексы и другие иммунологически активные вещества из кровотока. Кроме того, макро­фаги играют определенную роль в заживлении ран, элиминации стареющих раз­рушающихся клеток и развитии атеромы.

    Мононуклеарная фагоцитарная (МФ) система - это совокупность клеток, происходящих из моноцитов, обладающих фагоцитарной активностью. Кроме того, к фагоцитирующим клеткам относятся полинуклеарные фагоциты (ПМЯЛ) - нейтрофилы, эозинофилы, базофилы, микроглия (на рис. затушеваны).

    Важную роль в механизмах неспецифичкской защиты играют также ретикулярные, эндотелиальные клетки, которые не выполняют фагоцитарной функции, а поддерживают целостность лимфоидной ткани и кровеносных сосудов (Эндотелиальные клетки выстилают сосуды, ретикурные является основой кроветворных органов, образуются из мезенхимы).

    Фагоцит, описанный И.И. Мечниковым, состоит из 7 следующих фаз:

    1) Хемотаксис - движение клеток в направлении градиента молекул, выделенных микроорганизмами.

    Хемотаксические факторы упорядочивают движения фагоцитов. Они воздействуют на специфические рецепторы на плазмолемме фагоцитов стимуляция которых передается на элементы его цитоскелета и изменяет экспрессию адгезивных молекул. Вследствие этого формируются псевдоподии, которые обратимо прикрепляются к элементам соединительной ткани, что обеспечивает направленную миграцию клеток.

    2) Адгезия (прикрепление) клетки к объекту фагоцитоза Происходит при взаимодействии её рецепторного аппарата с молекулами на поверхности бактерии. Протекает в две стадии: -обратимая и непрочная -необратимая, прочная.

    3) Захват бактерии клетки с формированием фагосомы Псевдоподии охватывают бактерию, заключая ее в мембранный пузырек - фагосому. Если бактерия инкапсулирована, то на нее садятся IgG или СЗВ. В таком случае бактерия опсонизирована.

    4) Слияние гранул нейтрофила с фагосомой с образованием фаголизосомы Содержимое гранул выливается в просвет фаголизосомы (рН кислая).

    5) Повреждение и внутриклеточное переваривание бактерии Гибель бактерии наступает вследствие действия на нее антимикробных веществ, далее он подвергается перевариванию лизосомальными ферментами. Бактерицидный эффект усиливается действием токсичных реактивных биоокислителей (перикисью водорода, молекул. Кислородом, супероксидными радикалами, гипохлоритом...)

    Фагоцитоз, являясь механизмом неспецифической защиты (фагоцитироваться могут любые инородные частицы независимо от наличия иммунизации), в то же время способствует иммунологическим механизмам защиты. Это связано, во-первых, с тем, что поглощая макромолекулы и расщепляя их, фагоцит как бы раскрывает структурные части молекул, отличающиеся чужеродностью. Во-вторых, фагоцитоз в условиях иммунологической защиты протекает быстрее и эффективнее. Таким образом, явление фагоцитоза занимает промежуточное место между механизмами специфической и неспецифической защиты. Это еще раз подчеркивает условность деления механизмов защиты клеточного гомеостаза на специфические и неспецифические.

    Нефагоцитарный механизм разрушения микробов характерен для ситуаций, когда микроорганизмы имеют столь большие размеры, что клетки не могут их поглощать. В таких случаях фагоциты скапливаются вокруг бактерии и выбрасывают содержимое своих гранул, уничтожая микроб большими концентрациями антимикробных веществ.

    Воспалительная реакциия также относится к клеточным неспецифическим реакциям. Она является эволюционно выработанным процессом защиты внутренней среды от проникновения чужеродных макромолекул, поскольку внедрившиеся в ткань чужеродные начала, например, микроорганизмы, фиксируются в месте внедрения, разрушаются и даже удаляются из ткани во внешнюю среду с жидкой средой очага воспаления - экссудатом. Клеточные элементы как тканевого происхождения, так и выходящие в очаг из крови (лейкоциты), образуют вокруг места внедрения своеобразный защитный вал, препятствующий распространению чужеродных частиц по внутренней среде. В очаге воспаления особенно эффективно протекает процесс фагоцитоза

    Гуморальные факторы внутренней среды, обеспечивающие механизмы неспецифической защиты, представлены пропердиновой системой и системой комплемента, осуществляющие лизис чужеродных клеток. При этом система комплемента, хотя и может активироваться неиммунологическим путем, обычно вовлекается в иммунологические процессы и поэтому скорее должна относиться к специфическим механизмам защиты.

    Пропердиновая система реализует свой защитный эффект независимо от иммунных реакций.

    К числу гуморальных факторов неспецифической защиты относят также содержащиеся в плазме крови и тканевой жидкости лейкин ы, плакины, бетализины, л и з о ц м и т.д.. Лейкины выделяются лейкоцитами, плакины - тромбоцитами крови, они оказывают отчетливое бактериолитическое действие. Еще большим литическим эффектом на стафилококки и анаэробные микроорганизмы обладают бета-лизины плазмы крови. Содержание и активность этих гуморальных факторов не меняются при иммунизации, что дает основание считать их неспецифическими факторами защиты. К числу последних следует также отнести и довольно большой спектр веществ тканевой жидкости, обладающих способностью подавлять ферментативную активность микроорганизмов и жизнедеятельность вирусов. Это ингибиторы гиалуронидазы, фосфолипаз, коллагеназы, плазмина и интерферон лейкоцитов.

    Система мононуклеарных фагоцитов (греч. monox один + лат. nucleos ядро: греч. рhagos пожирающий, поглощающий + гистол. суtus клетка; синоним: макрофагальная система, моноцитарно-макрофагальная система) - физиологическая защитная система клеток, обладающих способностью поглощать и переваривать чужеродный материал. Клетки, входящие в состав этой системы, имеют общее происхождение, характеризуются морфологическим и функциональным сходством и присутствуют во всех тканях организма.

    Основой современного представления о cистема мононуклеарных фагоцитов является фагоцитарная теория, разработанная И.И. Мечниковым в конце 19 в., и учение немецкого патолога Ашоффа (К. А.L. Aschoff) о ретикулоэндотелиальной системе (РЭС). Первоначально РЭС была выделена морфологически как система клеток организма, способных накапливать витальный краситель кармин. По этому признаку к РЭС были отнесены гистиоциты соединительной ткани, моноциты крови, клетки Купфера печени, а также ретикулярные клетки кроветворных органов, эндотелиальные клетки капилляров, синусов костного мозга и лимфатического узлов.

    По мере накопления новых знаний и совершенствования морфологических методов исследования стало ясно, что представления о ретикулоэндотелиальной системе расплывчаты, не конкретны, а в ряде положений просто ошибочны. Так, например, ретикулярным клеткам и эндотелию синусов костного мозга и лимфатических узлов длительное время приписывалась роль источника фагоцитирующих клеток, что оказалось неверным. В настоящее время установлено, что мононуклеарные фагоциты происходят из циркулирующих моноцитов крови. Моноциты созревают в костном мозге, затем поступают в кровяное русло, откуда мигрируют в ткани и серозные полости, становясь макрофагами. Ретикулярные клетки выполняют опорную функцию и создают так называемое микроокружение для кроветворных и лимфоидных клеток. Эндотелиальные клетки осуществляют транспорт веществ через стенки капилляров. Непосредственного отношения к защитной системе клеток ретикулярные клетки и эндотелий сосудов не имеют. В 1969 г. на конференции в Лейдене, посвященной проблеме РЭС, понятие «ретикулоэндотелиальная система» было признано устаревшим. Вместо него принято понятие «система мононуклеарных фагоцитов».

    К этой системе относят гистиоциты соединительной ткани, клетки Купфера печени (звездчатые ретикулоэндотелиоциты), альвеолярные макрофаги легких, макрофаги лимфатических узлов, селезенки, костного мозга, плевральные и перитонеальные макрофаги, остеокласты костной ткани, микроглию нервной ткани, синовиоциты синовиальных оболочек, клетки Лангергаиса кожи, беспигментные гранулярные дендроциты. Различают свободные, т.е. перемещающиеся по тканям, и фиксированные (резидентные) макрофаги, имеющие относительно постоянное место.

    Макрофаги тканей и серозных полостей, по данным сканирующей электронной микроскопии, имеют форму, близкую к сферической, с неровной складчатой поверхностью, образованной плазматической мембраной (цитолеммой). В условиях культивирования макрофаги распластываются на поверхности субстрата и приобретают уплощенную форму, а при перемещении образуют множественные полиморфные псевдоподии. Характерным ультраструктурным признаком макрофага служит наличие в его цитоплазме многочисленных лизосом и фаголизосом, или пищеварительных вакуолей. Лизосомы содержат различные гидролитические ферменты, обеспечивающие переваривание поглощенного материала.

    Макрофаги - активные секреторные клетки, которые освобождают в окружающую среду ферменты, ингибиторы, компоненты комплемента. Основным секреторным продуктом макрофагов является лизоцим. Активированные макрофаги секретируют нейтральные протеиназы (эластазу, коллагеназу), активаторы плазминогена, факторы комплемента, такие как С2, С3, С4, С5, а также интерферон.

    Клетки cистема мононуклеарных фагоцитовобладают рядом функций, в основе которых лежит их способность к эндоцитозу, т.е. поглощению и перевариванию инородных частиц и коллоидных жидкостей. Благодаря этой способности они выполняют защитную функцию. Посредством хемотаксиса макрофаги мигрируют в очаги инфекции и воспаления, где осуществляют фагоцитоз микроорганизмов, их умерщвление и переваривание. В условиях хронического воспаления могут появляться особые формы фагоцитов - эпителиоидные клетки (например, в инфекционной гранулеме) и гигантские многоядерные клетки типа клеток Пирогова - Лангханса и типа клеток инородных тел. которые образуются путем слияния отдельных фагоцитов в поликарион - многоядерную клетку. В гранулемах макрофаги вырабатывают гликопротеид фибронектин, который привлекает фибробласгы и способствует развитию склероза.

    Клетки cистема мононуклеарных фагоцитов принимают участие в иммунных процессах. Так, непременным условием развития направленного иммунного ответа является первичное взаимодействие макрофага с антигеном. При этом антиген поглощается и перерабатывается макрофагом в иммуногенную форму. Иммунная стимуляция лимфоцитов происходит при непосредственном контакте их с макрофагом, несущим преобразованный антиген. Имунный ответ в целом осуществляется как сложное многоэтапное взаимодействие Г- и В-лимфоцитов с макрофагами.

    Макрофаги обладают противоопухолевой активностью и проявляют цитотоксические свойства в отношении опухолевых клеток. Эта активность особенно выражена у так называемых иммунных макрофагов, осуществляющих лизис опухолевых клеток-мишеней при контакте с сенсибилизированными Т-лимфоцитами, несущими цитофильные антитела (лимфокины).

    Клетки cистема мононуклеарных фагоцитов принимают участие в регуляции миелоидного и лимфоидного кроветворения. Так, островки кроветворения в красном костном мозге, селезенке, печени и желточном мешке эмбрионе формируются вокруг особой клетки - центрального макрофага, организующего эритропоэз эритробластического островка. Клетки Купфера печени участвуют в регуляции кроветворения путем выработки эритропоэтина. Моноциты и макрофаги вырабатывают факторы, стимулирующие продукцию моноцитов, нейтрофилов и эозинофилов. В вилочковой железе (тимусе) и тимусзависимых зонах лимфоидных органов обнаружены так называемые интердигитирующие клетки - специфические стромальные элементы, также относящиеся к cистемs мононуклеарных фагоцитов, ответственные за миграцию и дифференцировку лимфоцитов.

    Обменная функция макрофагов заключается в их участии в обмене железа. В селезенке и костном мозге макрофаги осуществляют эритрофагоцитоз, при этом в них происходит накопление железа в форме гемосидерина и ферритина, которое питом может реутилизироваться эритробластами.

    К мононуклеарным фагоцитам относятся моноциты периферической крови и тканевые макрофаги (макрофаги соединительной ткани, макрофаги печени, альвеолярные макрофаги легких, свободные и фиксированные макрофаги селезёнки и лимфатических узлов, макрофаги серозных полостей, клетки микроглии ЦНС, остеокласты костной ткани) (Рис. 2-28). Мононуклеарные фагоциты (М.Ф.) генерируются в костном мозге из кроветворной полипотентной клетки и в форме моноцита покидают орган и поступают в кровоток (Рис. 2-27). Часть тканевых макрофагов образуется из моноцитов крови и часть — в результате пролиферации тканевых макрофагов.

    Мононуклеарные фагоциты обладают следующими свойствами:

    1) высокой фагоцитарной способностью и бактерицидностью. (Мононуклеарные фагоциты способны поглощать микроорганизмы, повреждённые и погибшие клетки, разрушать их и метаболизировать);

    2) участвуют в индукции гуморального и клеточного иммунитета (представляют антиген лимфоцитам в иммуногенной форме);

    3) оказывают регуляторное влияние на развитие иммунных реакций и гемопоэз (продуцируемые клетками ИЛ-1, ИЛ-6, ИЛ-12, ИЛ-8 оказывают активирующее действие на Т-хелперы, Т-цитотоксические клетки, В-лимфоциты, а гемопоэтины (ГМ-КСФ,Г-КСФ) – повышают функциональную активность кроветворных клеток);

    4) являются эффекторами иммунных реакций. (Активированные макрофаги способны уничтожать чужеродные и опухолевые клетки через развитие реакции АЗКЦ или экзопродукцию гидролитических энзимов, цитотоксических форм кислорода и ФНОa).

    На мембране макрофагов экспрессированы различные рецепторы для захвата микроорганизмов: макрофагальный маннозный рецептор (ММР), Scavenger-рецептор (рецептор-мусорщик, МРМ), рецепторы для бактериального ЛПС. Благодаря ММР, осуществляется захват Mycobacteria, Leishmania, Legionella, Pseudomonas aeraginosa и других. Через МРМ происходит эндоцитоз липопротеинов при превращении макрофага в пенистую клетку, а также фагоцитоз большинства бактерий. Помимо этих рецепторов, на поверхностной мембране макрофагов выявлены многочисленные рецепторы для цитокинов, гормонов, компонентов комплемента (С3, С4) и Fc-фрагмента иммуноглобулинов. Повышенная экспрессия рецепторов для Fc-фрагмента иммуноглобулинов и С3 ассоциируется с увеличением функциональной активности макрофагов и может модулироваться биологически активными субстанциями, например, усиливаться цитокинами, ингибироваться кортикостероидами.

    Кроме рецепторов, на поверхности макрофагов идентифицировано большое число антигенов, но ни один из них не является строго специфичным для этих клеток. Наиболее характерным считается антиген СD14, функционирующий как рецептор для ЛПС клеточной стенки грамотрицательных бактерий. Связывание молекулой CD14 комплекса бактериальных ЛПС вызывает немедленную активацию макрофагов, включение синтеза провоспалительных цитокинов и стимуляцию моноцитопоэза. В соответствии с этим молекула CD14 рассматривается как рецептор для фактора роста макрофагов. Экспрессия этого рецептора на макрофагах повышается при воспалении и иммунном ответе.

    Возможно участие CD14 в процессе адгезии моноцитов к эндотелиальным клеткам, хотя обратимая адгезия моноцитов к эндотелию при трансэндотелиальной миграции больше связана с другим компонентом мембраны – CD31. На моноцитах крови экспрессированы два β 2-интегрина: LFA-1 (CD11a) и Mac-1 (CD11b), а также β 1-интегрин VLA-4 (CD29). Их лигандами на эндотелиальных клетках являются молекулы адгезии ICAM-1, ICAM-2, VCAM-1, фибриноген, фибронектин и другие. Экспрессия этих лигандов на эндотелиальных клетках возрастает под влиянием провоспалительных цитокинов.

    Наиболее мощным и специфическим индуктором активности макрофагов является ИНФg. Активация макрофагов включает комплекс структурно-функциональных сдвигов, направленных на повышение защитной способности клеток. В процессе активации резко увеличивается интенсивность метаболических процессов, повышаются синтез и секреция биологически активных продуктов, активность лизосомных ферментов, экспрессия поверхностных рецепторов и антигенов, что проявляется усилением фагоцитарной активности макрофагов.

    Мононуклеарные фагоциты, в отличие от Т-лимфоцитов и В-лимфоцитов, не имеют клонально-заданных свойств и не обладают антигенной специфичностью, в иммунных реакциях они выступают как неспецифические клетки.