Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Становление патопсихологии
  • Как приготовить тортилью
  • Как приготовить тортилью
  • Ультразвук - это что? Ультразвук в медицине. Лечение ультразвуком

    Ультразвук - это что? Ультразвук в медицине. Лечение ультразвуком

    Человечеству известно множество способов влияния на организм в терапевтических и профилактических целях. Это и медикаменты, и методы оперативного вмешательства, и способы физиотерапевтического воздействия, и средства альтернативной медицины. Нельзя сказать, что какой-то из этих вариантов является более предпочтительным, так как они чаще всего применяются в сочетании между собой, и подбираются в индивидуальном порядке. К одним из удивительных методов воздействия на человеческий организм относится ультразвук, обсудим применение ультразвука в медицине и технике (кратко) чуть более подробно.

    Ультразвук представляет собой особенные звуковые волны. Оны не слышны человеческим ухом, и обладают частотой более 20 000 герц. Человечество уже много лет владеет информацией об ультразвуковых волнах, но в повседневной жизни его используют не так давно.

    Использование ультразвука в медицине (кратко)

    Ультразвук широко применяется в различных областях медицины – в терапевтических и диагностических целях. Все знакомое его использование в технике - аппарат для УЗИ (ультразвукового исследования).

    Использование в медицине для диагностики

    Такие звуковые волны используют для исследования различных внутренних органов. Ведь ультразвук хорошо распространяется в мягких тканях нашего тела, и характеризуется относительной безвредностью по сравнению с рентгеновскими лучами. Кроме того его куда проще использовать, чем более информативную магнитно-резонансную терапию.

    Применение ультразвука при диагностике позволяет визуализировать состояние различных внутренних органов, его часто применяют в обследовании органов брюшной полости либо таза.

    Такое исследование позволяет определить размеры органов и состояние тканей в них. Врач УЗИст может обнаружить опухолевые формирования, кисты, воспалительные процессы и пр.

    Применение в медицине в травматологии

    УЗИ широко применяется в травматологии, такой прибор как ультразвуковой остеометр позволяет определить не только наличие переломов либо трещин в костях, он еще и используется для обнаружения минимальных изменений костной структуры при подозрении на остеопороз либо при его диагностике.

    Эхография (еще одно популярное исследование с использованием ультразвука) позволяет определить наличие внутренних кровотечений при произошедших закрытых травмах груди либо живота. При обнаружении жидкости в брюшной полости эхография дает возможность выяснить локализацию и количество экссудата. Кроме того ее проводят и при диагностике закупорки крупных кровеносных сосудов – для определения величины и местонахождения эмболов, а также тромбов.

    Акушерство

    Ультразвуковое исследование является одним из наиболее информативных методов отслеживания развития плода и диагностики у него различных нарушений. С его помощью медики с точностью определяют, где находится плацента. Также ультразвуковое исследование во время беременности дает возможность оценить развитие плода, провести его замеры, узнав размеры площади живота, грудной клетки, диаметра и окружности головки и пр.

    Довольно часто данный вариант диагностики позволяет заблаговременно обнаружить аномальные состояния у плода и исследовать его перемещения.

    Кардиология

    Методы ультразвуковой диагностики широко используются для обследования сердца и сосудов. К примеру, так называемый М-режим применяют для обнаружения и распознавания сердечных аномалий. В кардиологии существует необходимость проводить регистрацию движения сердечных клапанов исключительно с частотами около 50 герц, соответственно, такое исследование может проводиться лишь при помощи ультразвука.

    Терапевтическое применение ультразвука

    Ультразвук широко используют в медицине для достижения терапевтического эффекта. Он оказывает отличное противовоспалительное и рассасывающее воздействие, обладает анальгезирующими и спазмолитическими качествами. Есть данные, что ультразвук также характеризуется антисептическими, сосудорасширяющими, рассасывающими и десенсебилизирующими (противоаллергическими) свойствами. Кроме того ультразвук могут применять для усиления проницаемости кожи при параллельном использовании дополнительных лекарственных средств. Подобный метод терапии носит название фонофореза. При его проведении на ткани пациента наносят не обыкновенный гель для ультразвуковой эмиссии, а лечебные вещества (медикаменты или природные компоненты). Благодаря ультразвуку целебные частицы проникают глубоко в ткани.

    В терапевтических целях используется ультразвук с другой частотой, нежели при диагностике, - от 800 000 до 3 000 000 колебаний за одну секунду.

    Применение в технике ультразвука кратко

    В медицинских целях используют самые разные ультразвуковые приборы. Некоторые из них предназначены лишь для применения в медучреждениях, другие же вполне можно использовать и в домашних условиях. Как раз к последним относятся небольшие ультразвуковые препараты, которые излучают ультразвук в пределах 500-3000кГц. Они позволяют проводить сеансы домашней физиотерапии, оказывают противовоспалительное и обезболивающее воздействие, улучшают кровообращение, стимулируют рассасывание, заживление раневых поверхностей, устранение отечности и рубцовых тканей, а также помогают уничтожить вирусные частицы и пр.

    Тем не менее, такую ультразвуковую технику стоит применять лишь после консультации с врачом, так как она имеет ряд противопоказаний к использованию.

    Вот таково использование ультразвука в технике и медицине.

    В последнее время широкое распространение в разных областях науки, техники и медицины получило использование ультразвука.

    Что же это такое? Где применяются ультразвуковые колебания? Какую пользу они способны принести человеку?

    Ультразвуком называют волнообразные колебательные движения с частотой более 15-20 килогерц, возникающие под воздействием окружающей среды и неслышимые для человеческого уха. Ультразвуковые волны легко фокусируются, что увеличивает интенсивность колебаний.

    Источники ультразвука

    В природе ультразвук сопровождает различные естественные шумы: дождь, грозу, ветер, водопад, морской прибой. Его способны издавать некоторые животные (дельфины, летучие мыши), что помогает им обнаруживать препятствия и ориентироваться в пространстве.

    Все существующие искусственные источники ультразвука подразделяют на 2 группы:

    • генераторы - колебания возникают в результате преодоления препятствий в виде газа или жидкостной струи.
    • электроакустические преобразователи- трансформируют электрическое напряжение в механические колебания, что приводит к излучению акустических волн в окружающую среду.

    Приемники ультразвука

    Низкие и средние частоты ультразвуковых колебаний в основном воспринимаются электроакустическими преобразователями пьезоэлектрического типа. В зависимости от условий использования различают резонансные и широкополосные устройства.

    Чтобы получить характеристики звукового поля, которые усреднены по времени, применяют термические приемники, представленные термопарами или термисторами, которые покрывают веществом, обладающим звукопоглощающими свойствами.

    Оптические методы, в число которых входит дифракция света, способны оценить интенсивность ультразвука и звуковое давление.

    Где применяются ультразвуковые волны?

    Ультразвуковые волны нашли применение в разнообразных областях.

    Условно сферы использования ультразвука можно разделить на 3 группы:

    • получение информации;
    • активное воздействие;
    • обработка и передача сигналов.

    В каждом случае используется определенный диапазон частот.

    Очистка ультразвуком

    Ультразвуковое воздействие обеспечивает качественную очистку деталей. При простом полоскании деталей на них остается до 80% грязи, при вибрационной чистке - близко 55%, при ручной - около 20%, а при ультразвуковой - менее 0,5%.

    Детали, обладающие сложной формой, можно избавить от загрязнений только при помощи ультразвука.

    Используются ультразвуковые волны и при очистке воздуха и газов. Ультразвуковой излучатель, помещенный в пылеосадочную камеру, увеличивает результативность ее действия в сотни раз.

    Механическая обработка хрупких и сверхтвердых материалов

    Благодаря ультразвуку стала возможной сверхточная обработка материалов. С его помощью делают вырезы различной формы, матрицы, шлифуют, гравируют и даже сверлят алмазы.

    Применение ультразвука в радиоэлектронике

    В радиоэлектронике нередко возникает необходимость задержать электрический сигнал по отношению к какому-то другому сигналу. Для этого стали пользоваться ультразвуковыми линиями задержки, действие которых основано на преобразовании электрических импульсов в ультразвуковые волны. Также они способны преобразовывать механические колебания в электрические. В соответствии с этим линии задержки могут быть магнитострикционными и пьезоэлектрическими.

    Использование ультразвука в медицине

    Применение ультразвуковых колебаний в медицинской практике основано на возникающих в биологических тканях эффектах во время прохождения сквозь них ультразвука. Колебательные движения оказывают на ткани массажирующее действие, а при поглощении ультразвука они локально нагреваются. В то же время в организме наблюдаются различные физико-химические процессы, не вызывающие необратимых изменений. В результате ускоряются обменные процессы, что благоприятно сказывается на функционировании всего организма.

    Применение ультразвука в хирургии

    Интенсивное действие ультразвука вызывает сильное нагревание и кавитацию, что нашло применение в хирургии. Использование фокусного ультразвука при проведении операций дает возможность осуществлять локальное разрушающее действие в глубинных участках организма, в том числе в области головного мозга, не нанося вреда близлежащим тканям.

    Хирурги в своей работе используют инструменты с рабочим концом в виде иглы, скальпеля или пилы. При этом хирургу не требуется прикладывать усилий, что уменьшает травматичность процедуры. В то же время ультразвук оказывает анальгезирующее и кровоостанавливающее действие.

    Воздействие ультразвуком назначается при обнаружении в организме злокачественного новообразования, что способствует его разрушению.

    Ультразвуковые волны обладает и антибактериальным действием. Поэтому они применяются для стерилизации инструментов и лекарственных средств.

    Исследование внутренних органов

    С помощью ультразвука осуществляют диагностическое обследование органов, расположенных в брюшной полости. Для этого применяют специальный аппарат.

    Во время ультразвукового исследования удается обнаружить различные патологии и аномальные структуры, отличить доброкачественное новообразование от злокачественного, обнаружить инфекцию.

    Ультразвуковые колебания используют при диагностике печени. Они позволяют определить болезни желчных потоков, исследовать желчный пузырь на присутствие в нем камней и патологических изменений, выявить цирроз и доброкачественные болезни печени.

    Широкое применение нашло ультразвуковое исследование в области гинекологии, особенно при диагностике матки и яичников. Оно помогает обнаружить гинекологические заболевания и дифференцировать злокачественные и доброкачественные опухоли.

    Используются ультразвуковые волны и при исследовании других внутренних органов.

    Применение ультразвука в стоматологии

    В стоматологии с помощью ультразвука удаляют зубной налет и камень. Благодаря ему наслоения снимаются быстро и безболезненно, без травмирования слизистой оболочки. В то же время происходит обеззараживание ротовой полости.

    Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.

    Энциклопедичный YouTube

    Источники ультразвука

    Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

    В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты , дельфины , летучие мыши , грызуны , долгопяты).

    Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

    Свисток Гальтона

    Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон .

    Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

    Жидкостный ультразвуковой свисток

    Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.

    Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

    Сирена

    Сирена - механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

    Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).

    Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

    Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

    Ультразвук в природе

    Применение ультразвука

    Диагностическое применение ультразвука в медицине (УЗИ)

    Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией , ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

    Терапевтическое применение ультразвука в медицине

    Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

    Ультразвук обладает следующими эффектами:

    • противовоспалительным, рассасывающим действиями;
    • анальгезирующим, эспазмолитическим действиями;
    • кавитационным усилением проницаемости кожи. [ ]

    Применение ультразвука в биологии

    Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [ ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

    Применение ультразвука для очистки

    Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоту и повышенную мощность.

    В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

    Применение ультразвука в расходометрии

    Для контроля расхода и учёта воды и теплоносителя с 1960-х годов в промышленности применяются ультразвуковые расходомеры .

    Применение ультразвука в дефектоскопии

    Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

    Ультразвуковая сварка

    Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднён, при соединении разнородных металлов, металлов с прочными оксидными плёнками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.), при производстве интегральных микросхем.

    Применение ультразвука в гальванотехнике

    Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

    Медицинская физика Подколзина Вера Александровна

    18. Ультразвук и его применение в медицине

    Ультразвук представляет собой высокочастотные механические колебания частиц твердой, жидкой или газообразной среды, неслышимые человеческим ухом. Частота колебаний ультразвука выше 20 000 в секунду, т. е. выше порога слышимости.

    Для лечебных целей применяется ультразвук с частотой от 800 000 до 3 000 000 колебаний в секунду. Для генерирования ультразвука используются устройства, называемые ультразвуковыми излучателями.

    Наибольшее распространение получили электромеханические излучатели. Применение ультразвука в медицине связано с особенностями его распространения и характерными свойствами. По физической природе ультразвук, как и звук, является механической (упругой) волной. Однако длина волны ультразвука существенно меньше длины звуковой волны. Чем больше различные акустические сопротивления, тем сильнее отражение и преломление ультразвука на границе разнородных сред. Отражение ультразвуковых волн зависит от угла падения на зону воздействия – чем больше угол падения, тем больше коэффициент отражения.

    В организме ультразвук частотой 800-1000 кГц распространяется на глубину 8-10 см, а при частоте 2500–3000 Гц – на 1,0–3,0 см. Ультразвук поглощается тканями неравномерно: чем выше акустическая плотность, тем меньше поглощение.

    На организм человека при проведении ультразвуковой терапии действуют три фактора:

    1) механический – вибрационный микромассаж клеток и тканей;

    2) тепловой – повышение температуры тканей и проницаемости клеточных оболочек;

    3) физико-химический – стимуляция тканевого обмена и процессов регенерации.

    Биологическое действие ультразвука зависит от его дозы, которая может быть для тканей стимулирующей, угнетающей или даже разрушающей. Наиболее адекватными для лечебно-профилактических воздействий являются небольшие дозировки ультразвука (до 1,2 Вт/см2 ), особенно в импульсном режиме. Они способны оказывать болеутоляющее, антисептическое (противомикробное), сосудорасширяющее, рассасывающее, противовоспалительное, десенсибилизирующее (противоаллергическое) действие.

    В физиотерапевтической практике используются преимущественно отечественные аппараты трех серий: УЗТ-1, УЗТ-2, УЗТ-3.

    Ультразвук не применяется на область мозга, шейных позвонков, костные выступы, области растущих костей, ткани с выраженным нарушением кровообращения, на живот при беременности, мошонку. С осторожностью ультразвук применяют на область сердца, эндокринные органы.

    Различают непрерывный и импульсный ультразвук. Непрерывным ультразвуком принято называть непрерывный поток ультразвуковых волн. Этот вид излучения используется главным образом для воздействия на мягкие ткани и суставы. Импульсный ультразвук представляет собой прерывистое излучение, т. е. ультразвук посылается отдельными импульсами через определенные промежутки времени.

    Из книги Физики продолжают шутить автора Конобеев Юрий

    П.А.У.Л.И. и его применение В. Вайскопф Получено в июле 1932 года, частично рассекречено в июле 1951 года Эта работа в течение 25 лет была засекречена Швейцарской комиссией по атомной энергии. Недавно получено сообщение, что в СССР создана такая же машина, но с радиусом в

    Из книги Физики шутят автора Конобеев Юрий

    П. А. У. Л. И. и его применение В. Вайскопф (Получено в июле 1932 года, частично рассекречено в июле 1951 года) Эта работа в течение 25 лет была засекречена Швейцарской комиссией по атомной энергии. Недавно получено сообщение, что в СССР создана такая же [машина, но с радиусом в

    Из книги Медицинская физика автора Подколзина Вера Александровна

    43. Классификация частотных интервалов, принятая в медицине Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи с этим целесообразно представить всевозможные электромагнитные волны в виде единой

    Из книги Физическая химия: конспект лекций автора Березовчук А В

    ЛЕКЦИЯ № 14. Применение теоретической и прикладной электрохимии 1. Прикладная электрохимия Прикладная электрохимия – часть электрохимии, которая рассматривает электрохимические реакции с точки зрения применения их для практических целей – получения электрической

    Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

    Из книги Атомная энергия для военных целей автора Смит Генри Деволф

    ПРИМЕНЕНИЕ ТОРИЯ, ПРОТАКТИНИЯ ИЛИ ДРУГИХ МАТЕРИАЛОВ 2.21. Все предыдущие рассуждения концентрировались вокруг того или иного использования урана; однако, известно, что как торий, так и протактиний также подвергаются делению при бомбардировке быстрыми нейтронами. Большим

    Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

    ВОЕННОЕ ПРИМЕНЕНИЕ 2.35. Если все атомы килограмма U-235 подвергнутся делению, то освобожденная при этом энергия будет эквивалентна энергии, получающейся при взрыве 20 000 тонн тринитротолуола. Если критические размеры бомбы окажутся практически осуществимыми - в пределах,

    Из книги автора

    ЭКСПЕРИМЕНТЫ С ПЕРЕМЕННЫМИ ТОКАМИ ОЧЕНЬ ВЫСОКОЙ ЧАСТОТЫ И ИХ ПРИМЕНЕНИЕ К МЕТОДАМ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ* Нет предмета более увлекательного, более достойного изучения, чем природа. Понять этот великий механизм, открыть действующие силы и законы, которые им управляют

    Если какое-либо тело колеблется в упругой среде быстрее, чем среда успевает обтекать его, оно своим движением то сжимает, то разрежает среду. Слои повышенного и пониженного давления разбегаются от колеблющегося тела во все стороны и образуют звуковые волны. Если колебания тела, создающего волну следуют друг за другом не реже, чем 16 раз в секунду не чаще, чем 18 тысяч раз в секунду, то человеческое ухо слышит их.

    Частоты 16 - 18000 Гц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми, например писк комара »10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими ниже и выше этого диапазона - инфра и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование неслышимых звуков было обнаружено с развитием акустики в конце XIX века. Тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

    Нижней границей ультразвукового диапазона называют упругие колебания частотой от 18 кГц. Верхняя граница ультразвука определяется природой упругих волн, которые могут распространяться только при том условии, что длина волны значительно больше длины свободного пробега молекул (в газах) или межатомных расстояний (в жидкостях и газах). В газах верхний предел составляет »106 кГц, в жидкостях и твёрдых телах »1010 кГц. Как правило, ультразвуком называют частоты до 106 кГц. Более высокие частоты принято называть гиперзвуком.

    Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

    • Малая длина волны. Для самого низкого ультразвукового диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя ультразвук распространяется в виде пучков по размеру близких к размеру излучателя. Попадая на неоднородности в среде, ультразвуковой пучок ведёт себя как световой луч, испытывая отражение, преломление, рассеяние, что позволяет формировать звуковые изображения в оптически непрозрачных средах, используя чисто оптические эффекты (фокусировку, дифракцию и др.)
    • Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.
    • Возможность получения высоких значений энергии колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.
    • В ультразвуковом поле развиваются значительные акустические течения. Поэтому воздействие ультразвука на среду порождает специфические эффекты: физические, химические, биологические и медицинские. Такие как кавитация, звукокапиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.
    • Ультразвук неслышим и не создаёт дискомфорта обслуживающему персоналу.

    История ультразвука. Кто открыл ультразвук.

    Внимание к акустике было вызвано потребностями морского флота ведущих держав - Англии и Франции, т.к. акустический - единственный вид сигнала, способный далеко распространяться в воде. В 1826 году французский учёный Колладон определил скорость звука в воде. Эксперимент Колладона считается рождением современной гидроакустики. Удар в подводный колокол в Женевском озере происходил с одновременным поджогом пороха. Вспышка от пороха наблюдалась Колладоном на расстоянии 10 миль. Он также слышал звук колокола при помощи подводной слуховой трубы. Измеряя временной интервал между этими двумя событиями, Колладон вычислил скорость звука - 1435 м/сек. Разница с современными вычислениями только 3 м/сек.

    В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт корабля. Результаты опыта оказались неутешительными. Звук колокола (как, впрочем, и подрыв в воде пороховых патронов), давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

    Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон . Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

    В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо "пьезоэлектричество" от греческого слова, означающего "нажать". Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

    Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием - подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с талантливым русским учёным-эмигрантом - Константином Васильевичем Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона - приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена - Шиловского, был первым ультразвуковым устройством , применявшимся на практике. Тогда же российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-психиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты, полученные ими, оказались недостоверными. В медицинской практике ультразвук впервые стал применяться только с 50-х годов XX-го века в США.

    Получение ультразвука.

    Излучатели ультразвука можно разделить на две большие группы:

    1) Колебания возбуждаются препятствиями на пути струи газа или жидкости, или прерыванием струи газа или жидкости. Используются ограниченно, в основном для получения мощного УЗ в газовой среде.

    2) Колебания возбуждаются преобразованием в механические колебаний тока или напряжения. В большинстве ультразвуковых устройств используются излучатели этой группы: пьезоэлектрические и магнитострикционные преобразователи.

    Кроме преобразователей, основанных на пьезоэффекте, для получения мощного ультразвукового пучка используются магнитострикционные преобразователи. Магнитострикция - это изменение размеров тел при изменении их магнитного состояния. Сердечник из магнитострикционного материала, помещённый в проводящую обмотку меняет свою длину в соответствии с формой токового сигнала, проходящего по обмотке. Данное явление, открытое в 1842 г. Джеймсом Джоулем, свойственно ферромагнетикам и ферритам. Наиболее употребительные магнитострикционные материалы это сплавы на основе никеля, кобальта, железа и алюминия. Наибольшей интенсивности ультразвукового излучения позволяет достичь сплав пермендюр (49%Co, 2%V, остальное Fe), который используется в мощных УЗ излучателях. В частности в , выпускаемых нашим предприятием.

    Применение ультразвука.

    Многообразные применения ультразвука можно условно разделить на три направления:

    • получение информации о веществе
    • воздействие на вещество
    • обработка и передача сигналов

    Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется в таких исследованиях:

    • изучение молекулярных процессов в газах, жидкостях и полимерах
    • изучение строения кристаллов и других твёрдых тел
    • контроль протекания химических реакций, фазовых переходов, полимеризации и др.
    • определение концентрации растворов
    • определение прочностных характеристик и состава материалов
    • определение наличия примесей
    • определение скорости течения жидкости и газа
    Информацию о молекулярной структуре вещества даёт измерение скорости и коэффициента поглощения звука в нём. Это позволяет измерять концентрацию растворов и взвесей в пульпах и жидкостях, контролировать ход экстрагирования, полимеризации, старения, кинетику химических реакций. Точность определения состава веществ и наличия примесей ультразвуком очень высока и составляет доли процента.

    Измерение скорости звука в твёрдых телах позволяет определять упругие и прочностные характеристики конструкционных материалов. Такой косвенный метод определения прочности удобен простотой и возможностью использования в реальных условиях.

    Ультразвуковые газоанализаторы осуществляют слежение за процессами накопления опасных примесей. Зависимость скорости УЗ от температуры используется для бесконтактной термометрии газов и жидкостей.

    На измерении скорости звука в движущихся жидкостях и газах, в том числе неоднородных (эмульсии, суспензии, пульпы), основаны ультразвуковые расходомеры, работающие на эффекте Допплера. Аналогичная аппаратура используется для определения скорости и расхода потока крови в клинических исследованиях.

    Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

    • гидролокация
    • неразрушающий контроль и дефектоскопия
    • медицинская диагностика
    • определения уровней жидкостей и сыпучих тел в закрытых ёмкостях
    • определения размеров изделий
    • визуализация звуковых полей — звуковидение и акустическая голография

    Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

    Методы измерения, основанные на зависимости параметров резонансной колебательной системы от свойств нагружающей его среды (импеданс), применяются для непрерывного измерения вязкости и плотности жидкостей, для измерения толщины деталей, доступ к которым возможен только с одной стороны. Этот же принцип лежит в основе УЗ твердомеров, уровнемеров, сигнализаторов уровня. Преимущества УЗ методов контроля: малое время измерений, возможность контроля взрывоопасных, агрессивных и токсичных сред, отсутствие воздействия инструмента на контролируемую среду и процессы.

    Воздействие ультразвука на вещество.

    Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия ультразвука различны для разных сред. В газах основным действующим фактором являются акустические течения, ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину и как следствие, больший градиент температуры или концентрации. Этот эффект используется в таких процессах, как:

    • ультразвуковая сушка
    • горение в ультразвуковом поле
    • коагуляция аэрозолей

    В ультразвуковой обработке жидкостей основным действующим фактором является кавитация . На эффекте кавитации основаны следующие технологические процессы:

    • ультразвуковая очистка
    • металлизация и пайка
    • звукокапиллярный эффект — проникновение жидкостей в мельчайшие поры и трещины. Применяется для пропитки пористых материалов и имеет место при любой ультразвуковой обработке твёрдых тел в жидкостях.
    • кристаллизация
    • интенсификация электрохимических процессов
    • получение аэрозолей
    • уничтожения микроорганизмов и ультразвуковая стерилизация инструментов

    Акустические течения — один из основных механизмов воздействия ультразвука на вещество. Он обусловлен поглощением ультразвуковой энергии в веществе и в пограничном слое. Акустические потоки отличаются от гидродинамических малой толщиной пограничного слоя и возможностью его утонения с увеличением частоты колебаний. Это приводит к уменьшению толщины температурного или концентрационного погранслоя и увеличению градиентов температуры или концентрации, определяющих скорость переноса тепла или массы. Это способствует ускорению процессов горения, сушки, перемешивания, перегонки, диффузии, экстракции, пропитки, сорбции, кристаллизации, растворения, дегазации жидкостей и расплавов. В потоке с высокой энергией влияние акустической волны осуществляется за счёт энергии самого потока, путём изменения его турбулентности. В этом случае акустическая энергия может составлять всего доли процентов от энергии потока.

    При прохождении через жидкость звуковой волны большой интенсивности, возникает так называемая акустическая кавитация . В интенсивной звуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко схлопываются при переходе в область повышенного давления. В кавитационной области возникают мощные гидродинамические возмущения в виде микроударных волн и микропотоков. Кроме того, схлопывание пузырьков сопровождается сильным локальным разогревом вещества и выделением газа. Такое воздействие приводит к разрушению даже таких прочных веществ, как сталь и кварц. Этот эффект используется для диспергировании твёрдых тел, получения мелкодисперсных эмульсий несмешивающихся жидкостей, возбуждения и ускорения химических реакций, уничтожения микроорганизмов, экстрагирования из животных и растительных клеток ферментов. Кавитация определяет также такие эффекты как слабое свечение жидкости под действием ультразвука - звуколюминесценция , и аномально глубокое проникновение жидкости в капилляры - звукокапиллярный эффект .

    Кавитационное диспергирование кристаллов карбоната кальция (накипи) лежит в основе акустических противонакипных устройств . Под воздействием ультразвука происходит раскалывание частиц, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности частиц. Это приводит к переносу процесса образования накипи с теплообменной поверхности в непосредственно в жидкость. Ультразвук так же воздействует и на сформированный слой накипи, образуя в нем микротрещины способствующие откалыванию кусочков накипи с теплообменной поверхности.

    В установках по ультразвуковой очистке с помощью кавитации и порождаемых ею микропотоков удаляют загрязнения как жёстко связанные с поверхностью, типа окалины, накипи, заусенцев, так и мягкие загрязнения типа жирных плёнок, грязи и т.п. Этот же эффект используется для интенсификации электролитических процессов.

    Под действием ультразвука возникает такой любопытный эффект, как акустическая коагуляция, т.е. сближение и укрупнение взвешенных частиц в жидкости и газе. Физический механизм этого явления ещё не окончательно ясен. Акустическая коагуляция применяется для осаждения промышленных пылей, дымов и туманов при низких для ультразвука частотах до 20 кГц. Возможно, что благотворное действие звона церковных колоколов основано на этом эффекте.

    Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах:

    • уменьшение трения между поверхностями при УЗ колебаниях одной из них
    • снижение предела текучести или пластическая деформация под действием УЗ
    • упрочнение и снижение остаточных напряжений в металлах под ударным воздействием инструмента с УЗ частотой
    • Комбинированное воздействие статического сжатия и ультразвуковых колебаний используется в ультразвуковой сварке

    Различают четыре вида мехобработки с помощью ультразвука:

    • размерная обработка деталей из твёрдых и хрупких материалов
    • резание труднообрабатываемых материалов с наложением УЗ на режущий инструмент
    • снятие заусенцев в ультразвуковой ванне
    • шлифование вязких материалов с ультразвуковой очисткой шлифовального круга

    Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. Ультразвук является катализатором, ускоряющим установление равновесного, с точки зрения физиологии состояния организма, т.е. здорового состояния. УЗ оказывает на больные ткани значительно большее влияние, чем на здоровые. Также используется ультразвуковое распыление лекарственных средств при ингаляциях. Ультразвуковая хирургия основана на следующих эффектах: разрушение тканей собственно сфокусированным ультразвуком и наложение ультразвуковых колебаний на режущий хирургический инструмент.

    Ультразвуковые устройства применяются для преобразования и аналоговой обработки электронных сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции - т.н.брегговская дифракция зависит от длины волны ультразвука, что позволяет выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

    Ультразвук чрезвычайно интересная вещь и можно предположить, что многие возможности его практического применения до сих пор не известны человечеству. Мы любим и знаем ультразвук и будем рады обсудить любые идеи, связанные его применением.

    Где применяется ультразвук - сводная таблица

    Наше предприятие, ООО «Кольцо-энерго», занимается производством и монтажом акустических противонакипных устройств «Акустик-Т». Устройства, выпускаемые нашим предприятием, отличаются исключительно высоким уровнем ультразвукового сигнала, что позволяет им работать на котлах без водоподготовки и пароводяных бойлерах с артезианской водой. Но предотвращение накипи - очень малая часть того, что может ультразвук. У этого удивительного природного инструмента огромные возможности и мы хотим рассказать вам о них. Сотрудники нашей компании много лет работали в ведущих российских предприятиях, занимающихся акустикой. Мы знаем об ультразвуке очень много. И если вдруг возникнет необходимость применить ультразвук в вашей технологии,