Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Скорость звука в различных средах таблица. Скорость звука в различных средах

    Скорость звука в различных средах таблица. Скорость звука в различных средах

    Введение.

    Понятие звука обычно ассоциируется у нас со слухом и, следовательно, с физиологическими процессами в ушах, а также с психологическими процессами в нашем мозгу (там происходит переработка ощущений, поступающих в органы слуха). Кроме того, под звуком мы понимаем физическое явление, вызывающее действие на наши уши, а именно продольные волны. Если такие упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 16 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука . В соответствии с этим упругие волны в любой среде, имеющие частоту, заключённую в указанных пределах, называют звуковыми волнами или просто звуком . Упругие волны с частотами, меньшими 16 Гц, называют инфразвуком ; волны с частотами, превышающими 20000 Гц, называют ультразвуком . Инфра- и ультразвуки человеческое ухо не слышит.

    Для слушающего человека сразу становятся очевидными две характеристики звука, а именно его громкость и высота. Громкость связана с интенсивностью звуковой волны, которая пропорциональна квадрату амплитуды волны. Высота звука показывает, является ли он высоким, как у скрипки или у виолончели, или низким, как звук большого барабана или басовой струны. Физической величиной, характеризующей высоту звука, является частота колебаний звуковой волны, что впервые заметил Галилей. Чем меньше частота, тем ниже высота звука, а чем больше частота, тем звук выше.

    Одной из важных характеристик звука является его скорость . Скорость звука - это скорость распространения звуковых волн в среде. В газах скорость звука меньше, чем в жидкостях, а в жидкостях меньше, чем в твердых телах (причем для поперечных волн скорость всегда меньше, чем для продольных). Скорость звука в газах и парах от 150 до 1000 м/с, в жидкостях от 750 до 2000 м/с, в твердых телах от 2000 до 6500 м/с. В воздухе при нормальных условиях скорость звука 330 м/с, в воде - 1500 м/с.

    Также в реферате рассматривается эффект, на существование которого в 1842 году указал КРИСТИАН ДОПЛЕР (Допплер) (Doppler) (1803-53), австрийский физик и астроном. Позже этот эффект был назван его именем.

    1. Скорость звуковых волн в различных средах.

    Мы обычно считаем, что звук распространяется в воздухе, потому что, как правило, именно воздух контактирует с нашими барабанными перепонками, и его колебания заставляют колебаться эти перепонки. Однако звуковые волны могут распространяться и в других веществах. Удары двух камней друг о друга пловец может слышать, находясь под водой, поскольку колебания передаются уху водой. Если приложить ухо к земле, то можно услышать приближение поезда или трактора. В этом случае земля не воздействует непосредственно на ваши барабанные перепонки. Однако продольную волну, распространяющуюся в земле, называют звуковой волной, поскольку её колебания приводят к колебаниям воздуха во внешнем ухе. Действительно, продольные волны, распространяющиеся в любой материальной среде, часто называют звуковыми. Очевидно, звук не может распространяться в отсутствие вещества. Например, нельзя услышать звон колокола, находящегося внутри сосуда, из которого выкачан воздух [опытРобертаБойля (1660 год)].

    Скорость звука в различных веществах имеет разные значения. В воздухе при температуре 0 о C и давлении 1 атм звук распространяется со скоростью 331,3 м/с. В воздухе и других газообразных и жидких средах скорость зависит от модуля всестороннего сжатия B и плотности среды(вещества) r :

    В гелии, плотность которого значительно меньше, чем плотность воздуха, а модуль всестороннего сжатия почти такой же, скорость звука больше почти в три раза. В жидкостях и твёрдых телах, которые значительно менее сжимаемы и, следовательно, имеют значительно большие модули упругости, скорость соответственно больше. Значения скорости звука в различных веществах приведены в таблицах 1.1, 1.2, 1.3; они в наибольшей степени зависят от температуры (смотри таблицы 1.4, 1.5), однако эта зависимость существенна только для газов и жидкостей. Например, в воздухе при повышении температуры на 1 о C скорость звука возрастает приблизительно на 0,60 м/с:

    u»(331+0,60T) м/с,

    где T-температура в о C. Например, при 20 о C мы имеем:

    u» м/с = 343 м/с.

    2. Эффект Доплера в акустике.

    Вы могли заметить, что высота звука сирены пожарной машины, движущейся с большой скоростью, резко падает после того, как эта машина пронесётся мимо вас. Возможно, вы замечали также изменение высоты сигнала автомобиля, проезжающего на большой скорости мимо вас. Высота звука двигателя гоночного автомобиля тоже изменяется, когда он проезжает мимо наблюдателя. Если источник звука приближается к наблюдателю, высота звука возрастает по сравнению с тем, когда источник звука покоился. Если же источник звука удаляется от наблюдателя, то высота звука понижается. Это явление называется эффектом Доплера и имеет место для всех типов волн. Рассмотрим теперь причины его возникновения и вычислим изменение частоты звуковых волн, обусловленное этим эффектом.

    Эффект Доплера: а - оба наблюдателя на тротуаре слышат звук сирены стоящей на месте пожарной машины на одной и той же частоте; б - наблюдатель, к которому приближается пожарная машина, слышит звук более высокой частоты, а наблюдатель, от которого машина удаляется, слышит более низкий звук.

    Рассмотрим для конкретности пожарный автомобиль, сирена которого, когда автомобиль стоит на месте, испускает звук определённой частоты во всех направлениях, как показано на рис. 2.1,а. Пусть теперь пожарный автомобиль начал двигаться, а сирена продолжает испускать звуковые волны на той же частоте. Однако во время движения звуковые волны, испускаемые сиреной вперёд, будут располагаться ближе друг к другу, чем в случае, когда автомобиль не двигался, что и показано на рис. 2.1,б. Это происходит потому, что в процессе своего движения пожарный автомобиль «догоняет» испущенные ранее волны. Таким образом, наблюдатель у дороги заметит большее число волновых гребней, проходящих мимо него в единицу времени, и, следовательно, для него частота звука будет выше. С другой стороны, волны, распространяющиеся позади автомобиля, будут дальше отстоять друг от друга, поскольку автомобиль как бы «отрывается» от них. Следовательно, за единицу времени мимо наблюдателя, находящегося позади автомобиля, пройдёт меньшее количество волновых гребней, и высота звука будет ниже.

    Рис. 2.2.

    Чтобы вычислить изменение частоты, воспользуемся рис. 2.2. Будем считать, что в нашей системе отсчёта воздух (или другая среда) покоится. На рис. 2.2 источник звука (например, сирена) находится в покое. Показаны последовательные гребни волн, причём один из них только что испущен источником звука. Расстояние между этими гребнями равно длине волны l . Если частота колебаний источника звука равна ¦, то время, прошедшее между испусканиями волновых гребней, равно

    T = 1/¦.

    На рис. 2.3 источник звука движется со скоростью u ист. За время T (оно только что было определено) первый гребень волны пройдёт расстояние d = u T , где u - скорость звуковой волны в воздухе (которая, конечно, будет одна и та же независимо от того, движется источник или нет). За это же время источник звука переместится на расстояние d ист = u ист T . Тогда расстояние между последовательными гребнями волны, равное новой длине волны l `, запишется в виде

    l ` = d + d ист = (u + u ист) T = (u + u ист)/¦,

    поскольку T = 1/¦. Частота ¦` волны даётся выражением

    ¦`=u /l ` = u ¦/ (u + u ист),

    ¦` = ¦/(1 + u ист / u ) [источник звука удаляется от покоящегося наблюдателя].

    Поскольку знаменатель дроби больше единицы, мы имеем ¦`<¦. Например, если источник создаёт звук на частоте 400 Гц, когда он находится в покое, то, когда источник начинает двигаться в направлении от наблюдателя, стоящего на месте, со скоростью 30 м/с, последний услышит звук на частоте (при температуре 0 о C)

    ¦` = 400 Гц / 1 + (30 м/с)/(331 м/с) = 366,64 Гц.

    Новая длина волны для источника, приближающегося к наблюдателю со скоростью u ист, будет равна

    l ` = d - d ист.

    При этом частота ¦` даётся выражением

    ¦` = ¦/(1 - u ист / u ) [источник звука приближается к покоящемуся наблюдателю].

    Эффект Доплера возникает также в том случае, когда источник звука покоится (относительно среды, в которой распространяются звуковые волны), а наблюдатель движется. Если наблюдатель приближается к источнику звука, то он слышит звук большей высоты, нежели испускаемый источником. Если же наблюдатель удаляется от источника, то звук кажется ему ниже. Количественно изменение частоты здесь мало отличается от случая, когда движется источник, а наблюдатель покоится. В этом случае расстояние между гребнями волны (длина волны l ) не изменяется, а изменяется скорость движения гребней относительно наблюдателя. Если наблюдатель приближается к источнику звука, то скорость волн относительно наблюдателя будет равна u ` = u + u набл, где u - скорость распространения звука в воздухе (мы предполагаем, что воздух покоится), а u набл – скорость наблюдателя. Следовательно, новая частота будет равна

    ¦`=u ` /l = (u + u набл)/ l ,

    или, поскольку l = u /¦,

    ¦` = (1 + u набл / u ) ¦ [наблюдатель приближается к покоящемуся источнику звука].

    В случае же, когда наблюдатель удаляется от источника звука, относительная скорость будет равна u ` = u - u набл,

    ¦` = (1 - u набл / u ) ¦ [наблюдатель удаляется от покоящегося источника звука].

    Если звуковая волна отражается от движущегося препятствия, то частота отражённой волны из-за эффекта Доплера будет отличаться от частоты падающей волны, т.е. произойдёт так называемый доплеровский сдвиг частоты. Если падающую и отражённую звуковые волны наложить друг на друга, то возникнет суперпозиция, а это приведёт к биениям. Частота биений равна разности частот двух волн. Такое проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в мегагерцевом диапазоне частот. Например, отражённые от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями. Следует заметить, что эффект Доплера лежит также в основе метода обнаружения с помощью радара автомобилей, которые превышают предписываемую скорость движения, но в этом случае используются электромагнитные (радио) волны, а не звуковые.

    Точность соотношений (2.1) и (2.2) снижается, если u ист или u набл приближаются к скорости звука. Это связано с тем, что смещение частиц среды уже не будет пропорционально возвращающей силе, т.е. возникнут отклонения от закона Гука, так что большинство наших теоретических рассуждений потеряет силу.

    Заключение.

    Звук распространяется в виде продольной волны в воздухе и других средах. Скорость звука в воздухе увеличивается с ростом температуры; при 0 о С она равна приблизительно 331 м/с.

    Эффект Доплера заключается в том, что движение источника звука или слушателя вызывает изменение высоты звука. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l - l о = nl о /c , где l о - длина волны источника, c - скорость распространения волны, n - относительная скорость движения источника. Другими словами, если источник звука и слушатель сближаются, то высота звука растёт; если же они удаляются друг от друга, то высота звука понижается.

    Список литературы.

    1. Большая энциклопедия Кирилла и Мефодия 2001 (2 CD-ROM).

    2. Джанколи Д. Физика: В 2-х т. Т. 1: Пер. с англ. - М.: Мир, 1989. – 656 с., ил.

    3. Енохович А. С. Краткий справочник по физике. – 2-е изд., перераб и доп. – М.: Высшая школа, 1976. – 288с., ил.

    4. Савельев И. В. Курс общей физики: Учеб. пособие. В 3-х т. Т. 2. Электричество и магнетизм. Волны. Оптика. – 3-е изд., испр. – М.: Наука. Гл. ред. физ.-мат. лит., 1988. – 496 с., ил.

    Приложение A .

    Приложение B .

    Таблицы.

    Примечание. Температурный коэффициент скорости звука показывает, на сколько метров в секунду увеличивается скорость звука в веществе при повышении его температуры на 1 о C. Знак минус показывает, что данная жидкость имеет отрицательный температурный коэффициент скорости. Это значит, что при увеличении температуры скорость звука в жидкости уменьшается. Исключение – вода, при повышении температуры от 0 до 74 о C скорость звука в ней увеличивается. Наибольшая скорость звука в воде при 74 о C равна 1555,5 м/с.

    Белорусский государственный университет

    Физический факультет Кафедра общей физики

    Методические указания к лабораторной работе 23н

    « ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В МЕТАЛЛЕ»

    Утверждены на заседании

    Кафедры общей физики

    «____»__________2002 г.

    Жолнеревич И.И. – зав. кафедрой общей физики, доцент Перковский Т. А.. – старший преподаватель

    Задание : определить скорость звука в стальной пластинке с предельной относительной погрешностью, не превышающей 5 %.

    Оборудование и принадлежности : установка для определения скорости звука стальной пластинке, микрометр.

    ОПИСАНИЕ УСТАНОВКИ Установка (рис. 1) состоит из

    двух частей: генератора электромагнитных колебаний и стойки.

    В основании стойки закреплена колонка 1 и телефон 2 (без мембраны) . Вдоль колонки можно перемещать и фиксировать в произвольном положении кронштейн 3 с тисками 4, которые служат для закрепления

    пластинки 5. Ее длину можно изменять. При этом кронштейн необходимо перемещать так, чтобы нижний конец пластинки находился против телефона. С помощью винта 6 можно изменять расстояние от телефона до нижнего конца пластинки.

    На передней панели генератора находится регулятор амплитуды напряжения 7, регулятор частоты 8 и дисплей 9, на котором отображаются значения амплитуды напряжения и частоты. На задней панели генератора (рис. 2) находится выключатель сети 10.

    ЭЛЕМЕНТЫ ТЕОРИИ Общие сведения. Волной называют колебания, распространяющиеся в простран-

    стве с течением времени. В механической волне колебания совершают частицы вещества. Вэлектромагнитной волне происходят колебания электрического и магнитного полей.Волновым фронтом называется множество точек, до которых дошли колебания.

    Это «передний край» волны. Волновой поверхностью называется множество точек, в которых колебания происходят в одинаковой фазе. В зависимости от формы волновой по-

    верхности различают плоские, сферические, цилиндрическиеи т.д. волны. Длиной волны

    () называется расстояние между волновыми поверхностями, колебания которых происходят с разностью фаз 2 . Период (T) – это время, за которое происходит одно колебание.Частота () – это число колебаний в единицу времени. Частота измеряется в герцах (Гц). 1 Гц – это частота, при которой происходит одно колебание в секунду. Скорость электромагнитных волн в вакууме равна 3 108 м/с. Скорость механических волн зависит от свойств вещества. За один период волна распространяется на расстояние, равное ее длине:

    Волна, в которой колебания происходят с единственной частотой, называется монохроматической волной. Например, монохроматическую звуковую волну издает камертон. В большинстве случаев в волне присутствуют колебания нескольких частот.

    Механические волны в веществе называются упругими волнами. Упругие волны с большой амплитудой называютсяударными волнами. Упругие волны с малой амплитудой, которые воспринимаются человеческим ухом, называютсязвуком . Частота звука лежит в интервале приблизительно от 16Гц до 20000Гц .

    Упругие волны в жидкостях и газах являются продольными. В них колебания частиц вещества происходятвдоль направления распространения волны. (Волны на поверхности жидкости не являются упругими. Они вызваны либо силами поверхностного натяжения, либо силами тяжести.) В твёрдых телах могут распространяться как продольные, так ипоперечные волны. В поперечной волне колебания частиц происходятперпендикулярно направлению распространения волны.

    Скорость продольных звуковых волн в твёрдых телах определяется соотношени-

    где E – модуль Юнга, – плотность тела.

    Теория метода. В упругом теле конечных размеров (например, струна или камертон) могут происходить колебания с определенными частотами. В этом можно убедиться, ударив молоточком по струне, камертону или другому упругому телу. Этособственные колебания упругого тела, их частоты связаны между собой. Амплитуда колебаний минимальной частоты (основного тона или первой гармоники), наибольшая. Эта частота определяет звучание тела. Амплитуда колебаний второй, третьей т.д. гармоник, или обертонов, меньше. От них зависит тембр звучания.

    В упругом теле, на которое действует периодически изменяющаяся внешняя сила, возникают вынужденные колебания той же частоты. Если частота внешней силы совпадет с частотой одной из гармоник собственных колебаний тела, наступитрезонанс . При этом амплитуда колебаний тела резко возрастет.

    Аналогичная зависимость наблюдается и для стальной пластинки, один конец которой жестко закреплен (рис. 3). Амплитуда колебаний пластинки резко возрастает, когда частота внешней силы, приложенной к нижнему концу пластинки, совпадает с одной из частот ν i

    ее собственных колебаний (i = 1, 2, 3 … – номер гармоники колебаний). Частота ν i зависит от размеров и физических свойств (модуля Юнга и плотности) материала пластинки. Скорость звука (см. соотношение 3) также определяется физическими свойствами материала пластинки.

    Теоретический анализ показывает, что скорость звука в пластинке выражается через ее длину L , толщину d , собственную частоту колебаний i и безразмерный параметр b i :

    Численное значение b i определяется номером гармоники колебаний:b 1 =

    1,87510; b 2

    4,69410; b k

    (2k 1)

    K 3,4,....

    Из (4) следует, что собственная частота колебаний пластинки обратно пропорциональна квадратуее длины (остальные величины в (4) постоянные):

    b2 cd

    Порядок выполнения задания

    1. С помощью регуляторов 7 и 8 (рис. 1) установить нулевые значения амплитуды напряжения и частоты. Установить длину пластинки L = 11 см. Это максимальная длина пластинки, которой соответствует минимальная частота собственных колебаний. Про уменьшении длины пластинки собственная частота колебаний будет возрастать.

    2. Включить генератор электромагнитных колебаний. Установить некоторое значение выходного напряжения (в интервале от 5 В до 9 В).

    3. Увеличивая частоту (с шагом 1 Гц), определить, в каком интервале частот становятся особенно заметными вынужденные колебания пластинки. После этого, уменьшая напряжение, изменяя расстояние между нижним концом пластинки и телефоном и плавно изменяя частоту (с шагом 0,1 Гц), определить резонансную частоту (первую гармоникусобственных колебаний пластинки).

    4. Определить частоту второй гармоники при данной длине пластинки. Для ускорения поиска 2 следует учесть, что2 = (b 2 /b 1 ) 2 1 = 6,267 1 (это вытекает из соотноше-

    5. Уменьшая длину пластинки до 8 см через 0,5 см, определить соответствующие каждому значению L собственные частоты колебаний1 и2 . Результаты измерений занести в таблицу1.

    6. Из соотношения (4) оценить минимальную относительную погрешность косвенных измерений величины c . Приборную погрешность считать равной 0,1 Гц.

    Таблица 1.

    Результаты измерения зависимости собственной частоты колебаний стальной пластинки от ее длины.

    L , м

    1 , Гц

    2 , Гц

    7. Обозначив в формуле (5) 1/L 2 =x, i , =y, k i =a, определить методом наименьших квадратов среднее значение и относительную случайную погрешностьk i для 1-й и 2-й гармоник (см. приложение, формулы (11) и (13)). Из соотношения (7) определить среднее значение и относительную случайную погрешностьс на 1-й и 2-й гармониках.

    8. Определить полную относительную погрешность косвенных измерений скорости звука в стальной пластинке.

    На основании проделанных измерений сформулировать цель работы и сделать выводы.

    Контрольные вопросы.

    1. От чего зависит скорость распространения волн в упругой среде?

    2. Имеются ли среды, в которых скорость распространения поперечных волн больше, чем продольных?

    3. Как определить собственные частоты колебаний упругого тела (стальной пластинки, струны рояля, столба воздуха в трубе органа)?

    ЛИТЕРАТУРА

    1. Кембровский Г.С. Приближённые вычисления и методы обработки результатов измерений в физике. -Минск: Изд-во "Университетское", 1990.

    2. Матвеев А.Н. Механика и теория относительности. -М.: Высшая школа, 1986.

    3. Петровский И.И. Механика. -Минск: Изд-во БГУ, 1973.

    4. Савельев И.В. Курс общей физики. -М.: Наука, 1982. Т. 1. Механика. Молекулярная физика.

    5. Сивухин Д.В. Общий курс физики. М.: Наука, 1989 Т. 1. Механика.

    6. Стрелков С.П. Механика. -М.: Наука, 1975.

    7. Физический практикум. Под ред. Кембровского Г.С. -Минск: Изд-во "Универ-

    ситетское", 1986.

    ПРИЛОЖЕНИЕ

    МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

    Пусть некоторая величина y прямо пропорциональна величинех, т.е.

    y = ax. (8)

    Экспериментально независимыми способами измерен ряд значений x i ,i = 1, 2, ...,n , одной величины и соответствующие им значенияy i другой величины. При графической обработке результатов измерений полученные данные по соответствующим правилам изображаются в виде точек (рис. 1п). Дальнейшая задача сводится к подбору такого угла наклона проводимой прямой, при котором она располагалась бы возможно ближе ко всем точкам и по обе ее стороны оказывалось бы приблизительно равное их коли-

    чество. Понятно, что выполнение подобной операции “на глаз” не может обеспечить высокую точностью Более точное математическое правило проведения прямой линии заключается в нахождении такого значения параметра а , при котором сумма квадратов отклонений всех экспериментальных точек от линии графика была бы наименьшей.

    Обычно случайные погрешности в определении аргумента х незначительны (как правило, в ходе эксперимента значенияx i задаются и устанавливаются на приборах самим экспериментатором). Поэтому отклонения экспериментальных точек от прямой, т.е. случайные погрешностиy i , будут равны разностям ординат данных точек и соответствующих точек на прямой (см. рис. 1п). Согласно методу наименьших квадратов наилучшей будет та прямая, для которой будет минимальной величина

    y i 2n

    (ax iy i) 2 .

    По условию минимума производная от величины S по параметруa должна быть равна нулю:

    При количестве измерений n 10 абсолютную случайную погрешность принимают равнойa c = 3a , приn = 7a c = 4a , приn = 5 величинаa c = 5a .

    Относительная случайная погрешность a,c =a c /a, или в процентах

    a, c

    Инструментальные и другие погрешности оценивают так же, как и при косвенных измерениях.

    Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

    Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слы­шим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значи­тельно меньше скорости света, идущего от молнии.

    Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсен-ном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

    Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.

    В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

    Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в во­де впервые была измерена в 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в ко­локол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой све­тового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре 8°С она оказалась равной 1440 м/с.

    Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рель­су, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой - по воздуху.

    Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепос­тных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближе­нием вражеской конницы.

    Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз спо­собны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

    Скорость звука можно определить, зная длину волны и частоту (или период) колебаний.

    >>Физика: Звук в различных средах

    Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

    Звук в газах . Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

    Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

    Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

    В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

    Звук в жидкостях . Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.


    На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

    При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

    Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

    Звук в твердых телах . Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

    Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

    Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

    1. Почему во время грозы мы сначала видим молнию и лишь потом слышим гром? 2. От чего зависит скорость звука в газах? 3. Почему человек, стоящий на берегу реки, не слышит звуков, возникающих под водой? 4. Почему "слухачами", которые в древние времена следили за земляными работами противника, часто были слепые люди?

    Экспериментальное задание . Положив на один конец доски (или длинной деревянной линейки) наручные часы, приложите ухо к другому ее концу. Что вы слышите? Объясните явление.

    С.В. Громов, Н.А. Родина, Физика 8 класс

    Отослано читателями из интернет-сайтов

    Планирование физики, планы конспектов уроков физики, школьная программа, учебники и книги по физике 8 класс, курсы и задание по физике для 8 класса

    Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки