Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имбирный чай — рецепты приготовления
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Проводящие пути сознательных проприоцептивных импульсов(tractus ganglio-bulbo- thalamo-corticalis) путь Голля, путь Бурдаха. Проводящие пути проприоцептивной чувствительности коркового направления Тонкий пучок голля и клиновидный бурдаха

    Проводящие пути сознательных проприоцептивных импульсов(tractus ganglio-bulbo- thalamo-corticalis) путь Голля, путь Бурдаха. Проводящие пути проприоцептивной чувствительности коркового направления Тонкий пучок голля и клиновидный бурдаха

    Страница 2

    Передний спинно-таламический тракт (tr. spinothalamicus anterior)

    – медленнопроводящий тракт дискретной тактильной чувствительности (чувство осязания, прикосновения, давления).

    Первые нейроны (рецепторные) расположены в спинномозговых узлах и представлены псевдоуниполярными клетками. Их периферические отростки-дендриты проходят в составе спинномозговых нервов и начинаются от специализированных рецепторов – телец Мейсснера, дисков Меркеля, телец Фатера – Пачини, расположенных в коже. От названных рецепторов отходят афферентные волокна типа Аd и Аg. Скорость проведения импульсов невелика – 8–40 м/с. Центральные отростки первых нейронов в составе задних корешков вступают в спинной мозг и делятся Т-образно на восходящую и нисходящую ветви, от которых отходит множество коллатералей. Концевые разветвления и коллатерали большей части волокон заканчиваются на верхушке заднего рога спинного мозга у клеток студенистого вещества (пластины I–III), которые являются вторыми нейронами. Большая часть аксонов первых нейронов тактильной чувствительности минуют серое вещество спинного мозга и направляются к стволу мозга в составе тонкого и клиновидного пучков спинного мозга.

    Аксоны вторых нейронов, тела которых расположены в студенистом веществе, образуют перекрест, переходя через переднюю белую спайку на противоположную сторону, причем уровень перекреста расположен на 2–3 сегмента выше места вхождения соответствующего заднего корешка. Затем они направляются в головной мозг в составе боковых канатиков, образуя передний спинно-таламический путь. Этот путь проходит через продолговатый мозг, затем через покрышку моста, где идет вместе с волокнами медиальной петли через покрышку среднего мозга, и заканчивается в вентро-базальных ядрах таламуса.

    Аксоны третьих нейронов проходят в составе таламо-коркового тракта через заднюю ножку внутренней капсулы, в составе лучистого венца достигают постцентральной извилины и верхней теменной дольки (соматосенсорные области коры SI и SII).

    Таким образом, передний спинно-таламический тракт является проводящим путем тактильной чувствительности.

    Задние канатики (синонимы: fasciculus gracilis, fasciculus cuneatus, тонкий и клиновидный пучки, пучки Голля и Бурдаха, дорсо-лемнисковая система,система

    петли, медиальный лемниск)

    Пучки Голля и Бурдаха – это быстропроводящие пути пространственной кожной чувствительности (чувство осязания, прикосновения, давления, вибрации, массы тела) и чувства положения и движения (суставно-мышечного (кинестетического) чувства).

    Первые нейроны тонкого и клиновидного пучков представлены псевдоуниполярными клетками, тела которых расположены в спинномозговых узлах. Дендриты проходят в составе спинномозговых нервов, начинаясь быстро адаптирующимися рецепторами волосистой части кожи (тельца Мейснера, тельца Фатера – Пачини) и рецепторов суставных сумок. В последнее время показана возможность участия проприоцепторов мышц и сухожилий в формировании осознанного проприоцептивного чувства.

    Центральные отростки псевдоуниполярных клеток в составе задних корешков вступают посегментно в спинной мозг в области задней латеральной борозды и, отдав коллатерали в II–IV пластины, идут в восходящем направлении в составе задних канатиков спинного мозга, образуя медиально-расположенный тонкий пучок Голля и латерально – клиновидный пучок Бурдаха (рис. 5).

    Пучок Голля

    проводит проприоцептивную чувствительность от нижних конечностей и нижней половины туловища: от 19 нижних спинномозговых узлов, включая 8 нижних грудных, 5 поясничных, 5 крестцовых и 1 копчиковый, а пучок Бурдаха

    – от верхней части туловища, верхних конечностей и шеи, соответствующих 12 верхним спинномозговым узлам (8 шейным и 4 верхним грудным).

    Пучки Голля и Бурдаха, не прерываясь и не перекрещиваясь в спинном мозге, достигают соименных ядер (тонкого и клиновидного), расположенных в дорсальных отделах продолговатого мозга, и здесь переключаются на вторые нейроны. Аксоны вторых нейронов идут на противоположную сторону, составляя внутренние дугообразные волокна (fibrae arcuatae internae) и, пересекая срединную плоскость, перекрещиваются с такими же волокнами противоположной стороны, образуя в продолговатом мозге между оливами перекрест медиальной петли (decussatio lemniscorum)

    Наружные дугообразные волокна (fibrae arcuatae externae) через нижние ножки мозжечка связывают систему петли с корой мозжечка.

    Далее волокна следуют через покрышку моста, покрышку ножек мозга и достигают латеральных ядер таламуса (вентро-базальный комплекс), где переключаются на третьи нейроны. В мосту к медиальной петле снаружи присоединяется спинно-таламический тракт (пути кожной чувствительности шеи, туловища и конечностей) и петля тройничного нерва, проводящие кожную и проприоцептивную чувствительность от лица.

    Через нижнюю треть заднего бедра внутренней капсулы система петли достигает верхней теменной дольки (5-е, 7-е цитоархитектонические поля) и постцентральной извилины коры больших полушарий (SI).

    Смотрите также

    Показания для оперативного вмешательства при коронарной недостаточности
    Основой для определения показаний к хирургическому лечению являются следующие факторы: 1. Клиника заболевания, т.е. выраженность коронарной недос...

    Оперативное лечение эксудативного перикардита
    Острый эксудативный перикардит чаще является следствием инфекционного, а в ряде случаев – аллергического воспаления. При этой форме перикардит...

    Подготовка жизненно важных органов больного к операции
    Подготовка органов дыхания На органы дыхания падает до 10 % послеоперационных осложнений. Поэтом на дыхательную систему больного хирург должен обращать особое внимание. При наличии бронхита, ...

    Связь спинного мозга с вышележащими отделами центральной нервной системы (мозговым стволом, мозжечком и большими полушарием осуществляется посредством восходящих и нисходящих проводящих путей . По восходящим путям передается информация, получаемая рецепторами.

    Импульсы от мышц, сухожилий и связок проходят в вышележащие отделы центральной нервной системы частью по волокнам пучковГолля и Бурдаха, находящимся в задних столбах спинного мозга , частью по волокнам спино-мозжечковых путей Говерса и Флексига, расположенных в боковых столбах. Пучки Голля и Бурдаха образованы отростками рецепторных нейронов, тела которых находятся в спинномозговых ганглиях (рис. 227 ).

    Эти отростки, войдя в спинной мозг , идут в восходящем направлении, отдавая короткие ветви к серому веществу нескольких выше и ниже расположенных сегментов спипного мозга. Эти ветви образуют синапсы на промежуточных и эффекторных нейронах, входящих в состав спинномозговых рефлекторных дуг. Пучки Голля и Бурдаха оканчиваются в ядрах продолговатого мозга, откуда начинается второй нейрон афферентного пути, направляющийся после перекреста к таламусу; здесь расположен третий нейрон, отростки которого проводят афферентные импульсы к коре больших полушарий (рис. 228 ).

    За исключением тех волокон, которые входят в состав пучков Голля и Бурдаха и идут, не прерываясь, в продолговатый мозг, все остальные афферентные нервные волокна задних корешков вступают в серое вещество спинного мозга и здесь прерываются, т. е. образуют синапсы на различных нервных клетках. От так называемых столбовых, или кларковых, клеток заднего рога и отчасти от спайковых, или комиссуральных, клеток спинного мозга берут начало нервные волокна пучков Говерса и Флексига.

    Нарушение проведения афферентных импульсов по спино-мозжечковым путям влечет за собой расстройство сложных движений, при которых наблюдаются нарушения мышечного тонуса и явления атаксии, как и при поражениях мозжечка.

    Рис. 228. Схема проводящих путей задних столбов спинного мозга. 1 - тактильные рецепторы кожи; 2 - нежный пучок Голля (fasciculus gracilis); 3 - клиновидный пучок Бурдаха (fasciculus cuneatus); 4 - медиальная петля (lemniscus medians); 5 - перекрест медиальной петли; 6 - ядро Бурдаха в продолговатом мозгу; 7 - ядро Голля в продолговатом мозгу; СМ - спинной мозг (сегменты С8 и S1); ПМ - продолговатый мозг; ВМ - варолиев мост; ЗБ - зрительные бугры (видны ядра, особенно заднее вентральное, где заканчиваются волокна медиальной петли).

    Импульсы от проприорецепторов распространяются по обладающим высокой скоростью проведения (до 140 м/сек) толстым миелиновым волокнам группы Аα, образующим спино-мозжечковые пути, и по более медленно проводящим (до 70 м/сек) волокнам пучков Голля и Бурдаха. Большая скорость проведения импульсов от рецепторов мышц суставов и сухожилий, очевидно, связана с важностью для организма быстрого получения информации о характере выполняемого двигательного акта, что обеспечивает непрерывный его контроль.

    Импульсы от болевых и температурных рецепторов поступают к клеткам задних рогов спинного мозга; отсюда начинается второй нейрон афферентного пути. Отростки этого нейрона на уровне этого же сегмента, где расположено тело нервной клетки, переходят на противоположную сторону, вступают в белое вещество боковых столбов и в составе латерального спино-таламического пути (см. рис. 227 ) идут к зрительному бугру, где начинается третий нейрон, проводящий импульсы к коре больших полушарий. Импульсы от болевых и температурных рецепторов частично проводятся и по волокнам, направляйся кверху по задним рогам серого вещества спинного мозга. Проводники болевой и температурной чувствительности представляют собой тонкие миелиновые волокна группы АΔ и безмиелиновые волокна, отличающиеся малой скоростью проведения.

    При некоторых поражениях спинного мозга могут наблюдаться расстройства только болевой или только температурной чувствительности. Более того, может быть нарушена чувствительность только к теплу или только к холоду. Это доказывает, что импульсация от соответствующих рецепторов проводится в спинном мозгу по нервным волокнам.

    Импульсы от тактильных рецепторов кожи поступают к клеткам задних рогов, отростки которых восходят по серому веществу на несколько сегментов, переходят на противоположную сторону спинного мозга, вступают в белое вещество и в вентрального спино-таламического пути несут импульсь к ядрам зрительных бугров, где находится третий нейрон, передающий получаемую им информацию коре больших полушарий. Импульсы от кожных рецепторов прикосновения и давления частично проходят также по пучкам Голля и Бурдаха.

    Имеются существенные различия в характере информации, доставляемой волоканми пучков Голля и Бурдаха и волокнами спино-таламических путей, а также в скорости распространения импульсов по тем и другим. По восходящим путям задних столбов передаются импульсы от рецепторов прикосновения, обеспечивающие возможность точной локализации места раздражения. Волокна этих путей проводят также импульсы большой частоты, возникающие при действии вибрации на рецепторы. Здесь же проводятся импульсы от рецепторов давления, дающие возможность точного определения интенсивности раздражения. По спино-таламическим путям проводятся импульсы от рецепторов прикосновения, давления, а также от температурных и болевых рецепторов, не обеспечивающие точной дифференцировки локализации и интенсивности раздражения.

    Волокна, проходящие в пучках Голля и Бурдаха, передающие более дифференцированную информацию о действующих раздражениях, проводят импульсы с большей скоростью, причем частота этих импульсов может меняться в значительных пределах. Волокна спино-таламических путей обладают малой скоростью проведения; при разной силе раздражения частота импульсов, проходящих в них, мало меняется.

    Импульсы, которые проводятся по афферентным путям, генерируют, как правило, возбуждающий постсинаптический потенциал, достаточно сильный для того, чтобы вызвать возникновение распространяющегося импульса в следующем нейроне восходящего афферентного пути. Однако импульсы, переходящие с одного нейрона на другой, могут затормаживаться, если в данный момент центральная нервная система получает по другим афферентным проводникам какую-либо более важную для организма информацию.

    По нисходящим путям спинного мозга поступают к нему импульсы от вышележащих эффекторных центров. Получая импульсы по нисходящим путям от центров головного мозга и передавая эти импульсы к рабочим органам, спинной мозг выполняет проводниково-исполнительскую роль.

    По кортикоспинальным, или пирамидным, путям, проходящим в передних боковых столбах спинного мозга, к нему приходят импульсы непосредствено от крупных пирамидных клеток коры больших полушарий. Волокна пирамидных путей образуют синапсы на промежуточных и моторных нейронах (прямая связь пирамидных нейронов с мотонейронами имеется только у человека и обезьян). В составе кортикоспинальных путей имеется около миллиона нервных волокон, среди которых около 3%составляют толстые волокна диаметром 16 мк, относящиеся к типу Аα и обладают большой скоростью проведения (до 120-140 м/сек). Эти волокна представляют собой отростки крупных пирамидных клеток коры. Остальные волокна имеют диаметр около 4 мк и обладают гораздо меньшей скоростью проведения. Значительное количество этих волокон проводит импульсы к спинальным нейронам вегетативной нервной системы.

    Кортикоспинальные пути боковых столбов перекрещиваются на уровне нижней трети продолговатого мозга. Кортикоспинальные пути передних столбов (так называемые прямые пирамидные пути) не перекрещиваются в продолговатом мозгу; они переходят на противоположную сторону вблизи того сегмента, где заканчиваются. В связи с этим перекрестом кортикоспинальных путей нарушения моторных центров одного полушария вызывают паралич мускулатуры противоположной стороны тела.

    Через некоторое время после повреждения пирамидных нейронов или идущих от них нервных волокон кортикоспинального тракта возникают некоторые патологические рефлексы. Типичным симптомом поражения пирамидных путей является извращенный кожно-подошвенный рефлекс Бабинского. Он проявляется в том, что штриховое раздражение подошвенной поверхности стопы вызывает разгибание большого пальца и веерообразное расхождение остальных пальцев ноги; такой рефлекс получается также и у новорожденных, у которых пирамидные пути еще не закончили своего развития У здоровых взрослых людей штриховое раздражение кожи подошвы вызывает рефлекторное сгибание пальцев.

    В синапсах, образованных волокнами кортикоспинального тракта, могут возникать как возбуждающие, так и тормозящие постсинаптические потенциалы. В результате может возникать возбуждение или торможение мотонейронов.

    Аксоны пирамидных клеток, образующие кортикоспинальные пути, отдают коллатерали, которые заканчиваются в ядрах полосатого тела, гипоталамуса, и красном ядре, в мозжечке, в ретикулярной формации мозгового ствола. От всех перечисленных ядер импульсы по нисходящим путям, называемым экстракортикоспинальными, или экстрапирамидными, поступают к вставочным нейронам спинного мозга. Главными из этих нисходящих путей являются ретикуло-спинальный, рубро-спинальный, текто-спинальный и вестибуло-спинальный тракты. По рубро-спинальному тракту (пучку Монакова) к спинному мозгу поступают импульсы от мозжечка, четверохолмия и подкорковых центров. Импульсы, проходящие по этому пути, имеют значение в координации движении и регуляции тонуса мышц.

    Вестибуло-спинальный тракт идет от вестибулярных ядер в продолговатом мозгу к клеткам переднего рога. Импульсы, приходящие по этому пути, обеспечивают осуществление тонических рефлексов положения тела. Ретикуло-спинальные пути передают активирующее и тормозящее влияния ретикулярной формации на нейроны спинного мозга. Они оказывают влияние- как на моторные, так и на промежуточные нейроны. Кроме всех этих длинных нисходящих путей (в белом веществе спинного мозга), имеются еще и короткие пути, связывающие вышележащие сегменты с нижележащими.

    Проводниковая функция спинного мозга заключается в том, что через него проходят восходящие и нисходящие пути.

    К восходящим путям относятся:

    • система задних канатиков (нежный и клиновидный пучки), являющихся проводниками кожно-механической чувствительности в ;
    • спиноталамические пути, по которым импульсы от рецепторов поступают к ;
    • спиномозжечковые пути (дорсальный и вентральный) участвуют в проведении импульсации, поступающей от кожных рецепторов и проприорецепторов в .

    К нисходящим путям относятся:

    • пирамидный, или кортикоспинальный, путь;
    • экстрапирамидные пути, включающие руброспинальный, ретикулоспинальный, вестибулоспинальный тракты. Эти нисходящие пути обеспечивают влияние высших отделов центральной нервной системы на функцию скелетных мышц.
    Классификация восходящих путей спинного мозга

    Название

    Характеристика

    Тонкий пучок Голля

    Проприоцепторы сухожилий и мышц, часть тактильных рецепторов кожи, от нижней части тела

    Клиновидный пучок Бурдаха

    Пропрноцепторы сухожилий и мышц, часть тактильных рецепторов кожи от верхней части тела

    Латеральный спиноталамический тракт

    Болевая и температурная чувствительность

    Вентральный спиноталамический тракт

    Тактильная чувствительность

    Дорсальный спинно-мозжечковый тракт Флексига

    Не перекрещенный — проприоцепция

    Вентральный спинно-мозжечковый тракт Говерса

    Дважды перекрещенный проприоцепция


    Классификация нисходящих путей спинного мозга

    Название

    Характеристика

    Латеральный кортикоспинальный пирамидный

    • Двигательные зоны коры
    • Перекрест в продолговатом мозге
    • Мотонейроны передних рогов спинного мозга
    • Произвольные двигательные команды

    Прямой передний кортикоспинальный пирамидный

    • Перекрест на уровне сегментов спинного мозга
    • Команды те же, что и у латерального тракта

    Руброспинальный (Монакова)

    • Красные ядра
    • Перекрест
    • Интернейроны спинного мозга
    • Тонус мышц-сгибателей

    Вестибулоспинальный

    • Вестибулярные ядра Дейтерса
    • Перекрест
    • Мотонейроны спинного мозга
    • Тонус мышц-разгибателей

    Ретикулоспинальный

    • Ядра ретикулярной формации
    • Интернейроны спинного мозга
    • Регуляция тонуса мышц

    Тектоспинальный

    • Ядра покрышки среднего мозга
    • Интернейроны спинного мозга
    • Регуляция тонуса мышц

    Функции проведения сигналов

    Нервные волокна спинного мозга формируют его белое вещество и используются для проведения множества сигналов от сенсорных рецепторов в ЦНС, сигналов между нейронами самого спинного мозга и между нейронами спинного и других отделов ЦНС, а также от нейронов спинного мозга к эффекторным органам. Значительную часть проводящих путей спинного мозга составляют аксоны так называемых проприоспинальных нейронов. Волокна этих нейронов создают связи между спинальными сегментами и не выходят за пределы спинного мозга.

    В качестве наиболее известных примеров простейших нейронных сетей проведения сигналов в спинном мозге и их использования для контроля работы эффекторных органов являются нейронные сети соматического и вегетативного рефлексов . В проведении сигнала (нервного импульса), первоначально возникающего в рецепторном нервном окончании, принимают участие чувствительный нейрон и его волокна, вставочный и моторный нейроны.

    Сигнал не только проводится нейронами в пределах сегмента, в которых они располагаются, но обрабатывается и используется для осуществления рефлекторной реакции на раздражение рецептора.

    Сигналы, возникающие в рецепторах поверхности тела, мышцах, сухожилиях, внутренних органах, проводятся также в вышележащие структуры ЦНС но волокнам канатиков (столбов) спинного мозга, называемых восходящими (чувствительными) проводящими путями (табл. 1). Эти пути образуются волокнами (аксонами) чувствительных нейронов, тела которых располагаются в спинальных ганглиях, и вставочных нейронов, тела которых находятся в задних рогах спинного мозга.

    Таблица 1. Основные восходящие чувствительные пути ЦНС

    Название

    Начало, 1-й нейрон

    Локализация в спинном мозге

    Окончание

    Функция

    Медиальный и задний канатики

    Соматосенсорная кора противоположного полушария. поля 1. 2. 3

    Клиновидный

    Аксоны чувствительных нейронов

    Латеральный и задний канатики

    Соматосенсорная кора противоположного полушария, поля 1, 2,3

    Проприоцептивные сигналы (осознаваемые)

    Дорсальный спиномозжечковые

    Ипсилатеральное ядро Кларка

    Латеральный канатик

    Кора иненлатерального полушария мозжечка

    Проприоцептивные сигналы (неосознаваемые)

    Вентральный спиномозжечковый

    Контрлатеральный задний рог

    Латеральный канатик

    Кора контрлатерального полушария мозжечка

    Проирноцепгивные сигналы (неосознаваемые)

    Латеральный спиноталамический

    Контрлатеральный задний рог

    Латеральный канатик

    Таламус, соматосенсорная кора

    Сигналы болевой температурной чуствительности

    Передний спиноталамический

    Контрлатеральный задний рог

    Таламус, соматосенсорная кора

    Осязание

    Ход волокон, проводящих сигналы от рецепторов различной чувствительности (модальности), неодинаков. Например, проводящие пути от проприорецепторов проводят в мозжечок и кору головного мозга сигналы о состоянии мышц, сухожилий, суставов. Волокна этого пути являются аксонами чувствительных нейронов спинальных ганглиев. Войдя через задние корешки в спинной мозг, они по той же стороне спинного мозга (не совершая перекреста), в составе тонкого и клиновидного пучков, восходят до нейронов продолговатого мозга, где заканчиваются образованием синапса и передают информацию на второй афферентный нейрон пути (рис. 1).

    Этот нейрон проводит обработанную информацию по аксону, переходящему на противоположную сторону, к нейронам ядер таламуса. После переключения на нейронах таламуса информация о состоянии двигательного аппарата проводится к нейронам постцентральной области коры мозга и используется для формирования ощущений о степени напряжения мышц, положения конечностей, угла сгибания в суставах, пассивного движения, вибрации.

    В составе тонкого пучка проходит также часть волокон от рецепторов кожи, проводящих информацию, используемую для формирования осознаваемой тактильной чувствительности в виде прикосновения, давления, вибрации.

    Другие спинальные чувствительные пути образованы аксонами вторых афферентных (вставочных) нейронов, тела которых находятся в задних рогах спинного мозга. Аксоны этих нейронов в пределах своего сегмента совершают перекрест и по противоположной стороне спинного мозга в составе латерального спиноталамического пути идут к нейронам таламуса.

    Рис. 1. Схема хода проводящих путей от проприорецепторов, тактильных, температурных и болевых рецепторов к стволу и коре мозга

    В составе этого пути проходят волокна, проводящие сигналы болевой и температурной чувствительности, а также часть волокон, проводящая сигналы тактильной чувствительности (см. рис. 1).

    В боковых канатиках проходят также передний и задний спиномозжечковые тракты. Они проводят сигналы от проприорецепторов к мозжечку.

    Сигналы по восходящим чувствительным путям проводятся также в центры АНС, ретикулярную формацию ствола мозга и другие структуры ЦНС.

    К нейронам спинного мозга поступают сигналы нейронов вышерасположенных структур головного мозга. Они следуют по аксонам нервных клеток, формирующих нисходящие (главным образом двигательные) проводящие пути , используемые для контроля тонуса мышц, формирования позы и организации движений. Важнейшими среди них являются кортикоспинальный (пирамидный), руброспинальный, ретикулоспинальный, вестибулоспинальный и тектоспинальный пути (табл. 2).

    Таблица 2. Основные нисходящие эфферентные пути ЦНС

    Название пути

    Начало, 1-й нейрон

    Локализация в спинном мозге

    Окончание

    Функция

    Латеральный кортикоспинальный

    Контрлатеральная кора мозга

    Латеральный канатик

    Инейлатеральный вентральный и дорсальный рога

    Передний кортикоспинальный

    Ипсилатсральная кора мозга

    Передний канатик

    Контралатеральный вентральный и

    дорсальный рога

    Контроль движений и модуляция чувствительности

    Руброспинальный

    Контрлатеральное красное ядро среднего мозга

    Латеральный канатик

    Контроль движений

    Латеральный вестибулоспинальный

    Ипсилатеральное, латеральное вестибулярное ядро

    Латеральный канатик

    Ипсилатеральный вентральный рог

    Контроль мышц, поддерживающих позу и баланс тела

    Медиальный

    вестнбулоспннальный

    Ипси-и- контрлатеральные медиальные вестибулярные ядра

    Передний канатик

    Ипсилатеральный вентральный рог

    Положение головы на вестибулярные сигналы

    Регикулоспннальный

    Ретикулярная формация моста и

    продолговатого мозга

    Латеральный и передний канатики

    Ипсилатеральный вентральный рог и промежуточная зона

    Контроль движений и позы, модуляция чувствительности

    Тектоспинальный

    Контрлатеральный верхний бугорок

    Передний канатик

    Ипсилатеральный вентральный рог

    Положение головы, связанное с движениями глаз

    В составе кортикоспинального пути выделяют латеральный, волокна которого идут в боковых канатиках белого вещества спинного мозга, и передний — в передних канатиках. Кортикоспинальный путь сформирован аксонами пирамидных нейронов моторных областей коры больших полушарий, которые заканчиваются синапсами в основном на вставочных нейронах спинного мозга. Небольшая часть волокон латерального кортикоспинального пути заканчивается синапсами непосредственно на а-мотонейронах спинного мозга, иннервирующих мышцы кисти и дистальные мышцы конечностей.

    Руброспинальный, ретикулоспинальный, вестибулоспинальный и тектоспинальный пути образованы аксонами нейронов соответствующих ядер ствола мозга и их называют также экстрапирамидными. По этим путям преимущественно к вставочным нейронам и у-мотонейронам спинного мозга проводятся эфферентные нервные импульсы, используемые для поддержания тонуса мышц, позы и осуществления непроизвольных движений, совершающиеся за счет врожденных или приобретенных рефлексов. Через эти пути формируются условия для эффективного выполнения произвольных движений, инициируемых корой головного мозга.

    Через спинной мозг проводятся сигналы от высших центров АНС к преганглионарным нейронам симпатической нервной системы, расположенным в боковых рогах его тораколюмбального отдела и к нейронам парасимпатической нервной системы, расположенным в сакральном отделе спинного мозга. Через эти пути спинного мозга поддерживаются тонус симпатической нервной системы и ее влияния на работу сердца, состояние просвета сосудов, работу желудочно-кишечного тракта и других внутренних органов, а также парасимпатической нервной системы и ее влияния на функции органов малого таза.

    Начиная с уровня перекреста моторных волокон кортикоспинального тракта продолговатого мозга до уровня СЗ шейного отдела спинного мозга располагается спинальное ядро тройничного нерва, к нейронам которого нисходят через продолговатый мозг аксоны чувствительных нейронов, расположенных в тройничном ганглии. По ним в ядро поступают сигналы болевой чувствительности зубов, других тканей челюстей и слизистой полости рта, болевые, температурные и сигналы прикосновения с поверхности лица, тканей глаза и глазницы.

    Аксоны нейронов спинального ядра тройничного нерва перекрещиваются и следуют в виде диффузного пучка к нейронам таламуса и к нейронам ретикулярной формации ствола мозга. При повреждениях афферентных волокон тройничного тракта и спинального ядра тройничного нерва может наблюдаться снижение или потеря болевой и температурной чувствительности на ипсилатеральпой стороне лица.

    При нарушении целостности путей проведения афферентных и (или) эфферентных сигналов на уровне спинного мозга или других уровнях ЦНС у человека снижается или выпадает определенный вид чувствительности и (или) движений. Зная морфологические особенности строения перекреста волокон проводящих путей, можно с учетом характера нарушения чувствительности и (или) движений установить уровень повреждения ЦНС, вызвавший эти нарушения.

    К вставочным и моторным по нисходящим путям проводятся сигналы от нейронов голубоватого пятна и ядра шва ствола мозга. Они используются для контроля мышечной активности, связанной с состояниями сна и бодрствования. К вставочным нейронам спинного мозга по нисходящим путям проводятся сигналы от нейронов околоводопроводного серого вещества. Эти сигналы и высвобождаемые из аксонов упомянутых нейронов нейромедиаторы используются для контроля болевой чувствительности.

    Пучки Голля и Бурдаха – это быстропроводящие пути пространственной кожной чувствительности (чувство осязания, прикосновения, давления, вибрации, массы тела) и чувства положения и движения (суставно-мышечного (кинестетического) чувства).

    Первые нейроны тонкого и клиновидного пучков представлены псевдоуниполярными клетками, тела которых расположены в спинномозговых узлах. Дендриты проходят в составе спинномозговых нервов, начинаясь быстро адаптирующимися рецепторами волосистой части кожи (тельца Мейснера, тельца Фатера – Пачини) и рецепторов суставных сумок. В последнее время показана возможность участия проприоцепторов мышц и сухожилий в формировании осознанного проприоцептивного чувства.

    Центральные отростки псевдоуниполярных клеток в составе задних корешков вступают посегментно в спинной мозг в области задней латеральной борозды и, отдав коллатерали в II–IV пластины, идут в восходящем направлении в составе задних канатиков спинного мозга, образуя медиально-расположенный тонкий пучок Голля и латерально – клиновидный пучок Бурдаха (рис. 5).

    Пучок Голля

    проводит проприоцептивную чувствительность от нижних конечностей и нижней половины туловища: от 19 нижних спинномозговых узлов, включая 8 нижних грудных, 5 поясничных, 5 крестцовых и 1 копчиковый, а пучок Бурдаха

    – от верхней части туловища, верхних конечностей и шеи, соответствующих 12 верхним спинномозговым узлам (8 шейным и 4 верхним грудным).

    Пучки Голля и Бурдаха, не прерываясь и не перекрещиваясь в спинном мозге, достигают соименных ядер (тонкого и клиновидного), расположенных в дорсальных отделах продолговатого мозга, и здесь переключаются на вторые нейроны. Аксоны вторых нейронов идут на противоположную сторону, составляя внутренние дугообразные волокна (fibrae arcuatae internae) и, пересекая срединную плоскость, перекрещиваются с такими же волокнами противоположной стороны, образуя в продолговатом мозге между оливами перекрест медиальной петли (decussatio lemniscorum)

    Наружные дугообразные волокна (fibrae arcuatae externae) через нижние ножки мозжечка связывают систему петли с корой мозжечка.

    Далее волокна следуют через покрышку моста, покрышку ножек мозга и достигают латеральных ядер таламуса (вентро-базальный комплекс), где переключаются на третьи нейроны. В мосту к медиальной петле снаружи присоединяется спинно-таламический тракт (пути кожной чувствительности шеи, туловища и конечностей) и петля тройничного нерва, проводящие кожную и проприоцептивную чувствительность от лица.

    Через нижнюю треть заднего бедра внутренней капсулы система петли достигает верхней теменной дольки (5-е, 7-е цитоархитектонические поля) и постцентральной извилины коры больших полушарий (SI).

    1. Проводящие пути проприоцептивной (глубокой) чувствительности. Состоят из пучков Голля и Бурдаха (рис. 502). С помощью этих путей совершаются движения, которые оцениваются сознанием. Управляемость движений осуществляется за счет афферентных импульсов из мышц и суставов движущихся частей тела. Импульсы достигают постцентральной извилины коры теменной доли. Эта обратная связь обеспечивает постепенность и координацию движений. При повреждении путей проприоцептивной чувствительности больной не может выполнять точные, соразмерные, ловкие движения.

    502. Схема проприоцептивных проводящих путей тройничного нерва, Голля и Бурдаха (по Сентаготаи).
    1 - путь Голля; 2 - путь Бурдаха; 3 - nucl. cuneatus; 4 - nucl. gracilis; 5 - чувствительный путь тройничного нерва; 6 - средний мозг; 7-чувствительное ядро V пары; 8 - мост; 9 - продолговатый мозг; 10 - спинной мозг; 11 - проприорецепторы путей Голля и Бурдаха.

    Первые униполярные чувствительные нейроны путей Голля и Бурдаха располагаются в спинномозговых узлах (рис. 502). Их рецепторы - веретенообразные тельца Кюне - начинаются в мышцах, формируя затем периферический нерв. Аксоны образуют задний корешок, который вступает посегментно в белое вещество заднего канатика, объединяясь в тонкий (Голля) и клиновидный (Бурдаха) пучки. Тонкий пучок находится ближе к медиальной борозде и слагается из аксонов копчиковых, крестцовых, поясничных, XII-VII грудных сегментов. Клиновидный пучок располагается латеральнее тонкого пучка и объединяет аксоны от VIII - I грудных и VIII - I шейных сегментов.

    Тонкий и клиновидный пучки оканчиваются не на ядрах спинного мозга, а в тонком и клиновидных ядрах продолговатого мозга. Аксоны клеток тонкого и клиновидного ядер (II нейрон) на границе с мостом образуют медиальную петлю, которая контактирует с клетками вентролатерального ядра таламуса. С латеральной стороны к медиальной петле присоединяются волокна спиноталамического пути. Аксоны из ядер таламуса (III нейрон), пройдя через заднюю часть внутренней капсулы, оканчиваются в коре верхней теменной дольки (поля 5 и 7) и в передней центральной извилине (поля 4-6).

    Часть волокон II нейронов проприоцептивных чувствительных путей направляется в мозжечок через его нижние ножки, участвуя в механизме координации движений.

    Существуют проприоцептивные чувствительные пути, которые связывают ядра спинного мозга, продолговатого мозга, моста, подкорковые образования, экстрапирамидную подсистему с мозжечком, участвующие в механизмах автоматической координации движений и тонусе мышц, помимо путей, замыкающихся в коре головного мозга. Эти механизмы, как правило, проявляются при внезапных нарушениях равновесия или выполнении автоматических движений (ходьба, танцы, письмо и др.), вырабатывающихся в процессе упражнений и под влиянием социальных моментов. Безусловнорефлекторные импульсы от всех перечисленных выше образований интегрируются в мозжечке, который координирует и определяет различные по точности движения. Импульсы из мозжечка оказывают регулирующее тормозящее влияние на ядра вестибулярного анализатора и ретикулярной формации. Так как от вестибулярных ядер возникает преддверно-спинальный путь, то по нему и ретикулоспинальному пути наступает угнетение или облегчение функции альфа- и гамма-мотонейронов передних столбов спинного мозга и мышечных веретен двигательных периферических нервов. Таким образом, благодаря механизмам обратной связи через вестибулоспинальный и ретикулоспинальный пути мозжечок согласовывает быстрые и медленные сокращения всех мышц. Мозжечок напоминает блок регуляции, основанный на принципе обратной связи. Червь мозжечка координирует движения при ходьбе и стоянии. В полушарии мозжечка расположены механизмы очень точной координации движений, преимущественно для выполнения движений верхней конечностью. Червь подчинен коре мозжечка, а она функционирует под влиянием коры головного мозга.