Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Как приготовить тортилью
  • Имбирный чай — рецепты приготовления
  • Имбирный чай — рецепты приготовления
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Химические превращения лекарств в организме, роль микросомальных ферментов печени. Значение возможного образования метаболитов различной активности и токсичности

    Химические превращения лекарств в организме, роль микросомальных ферментов печени. Значение возможного образования метаболитов различной активности и токсичности

    Как уже говорилось, длительное применение фенобарбитала приводит к изменению пигментного метаболизма печени. Многие другие лекарственные препараты, лекарственные вещества, и продукты могут повышать активность цитохрома Р-450 и соответственно, изменять время полужизни лекарства - объекта. Примеры факторов, могущих вызывать клинически значимые взаимодействия: курение сигарет, хронический алкоголизм, прием рифампицина и некоторых противосудорожных лекарственных средств (барбитуратов, фенитоина, карбамазепина). Быстрота развития и обратимость индукции ферментов зависит от индуктора и скорости синтеза новых ферментов. Этот адаптационный процесс относительно медленный и может занимать от нескольких дней до нескольких месяцев. Он также может ускорять метаболизм самого индуктора - это ауто-индукция.

    Два препарата - индуктора широко применяются в практике отделения интенсивной терапии - это рифампицин и фенобарбитал. В отличие от фенобарбитала, развитие действия которого как индуктора требует по крайней мере, нескольких недель, рифампицин как индуктор действует быстро и такое его действие может быть обнаружено уже через 2-4 дня и достигать своего максимума через 6-10 дней. Индукция ферментов, вызванная рифампицином, может приводить к более выраженным взаимодействиям с варфарином, циклоспорином, глюкокортикоидами, кетоконазолм, теофиллином, хинидином, дигитоксином и верапамилом, что требует пристального наблюдения за пациентом и частую коррекцию доз препарата - объекта. Цитохром может также индуцироваться противосудорожными препаратами, рифампицином, глюкокортикоидами и некоторыми антибиотиками из группы макролидов. Это также может приводить к появлению лекарственных взаимодействий.

    ИНГИБИРОВАНИЕ МИКРОСОМАЛЬНЫХ ФЕРМЕНТОВ ПЕЧЕНИ

    Ингибирование ферментов группы цитохромов - это самый частый механизм, ответственный за возникновение лекарственных взаимодействий в практике отделений интенсивной терапии. Если вещество угнетает цитохром, то оно изменяет и метаболизм препарата – объекта. Этот эффект заключается в удлинении времени полужизни лекарства-объекта и соответственно, повышать его концентрацию. Некоторые ингибиторы влияют сразу на несколько изоформ ферментов, это например макролидный антибиотик эритромицин. Для угнетения сразу нескольких изоформ ферментов могут потребоваться большие концентрации ингибитора. Флюконазол угнетает активность цитохрома 2-9 в дозе 100 мг в день, но если дозу повысить до 400 мг, то будет угнетаться активность цитохрома 3-4. Че6м выше доза ингибитора, тем быстрее наступает его действие и тем больше оно выражено. Ингибирование вообще развивается быстрее, чем индукция, обычно его можно зарегистрировать уже через 24 часа от момента назначения ингибиторов. Время развития максимального угнетения активности ферментов зависит как от самого ингибитора, так и от лекарства - объекта. Поскольку изоформы фермента отличаются по генам, воздействию окружающей Среды, возраста человека, имеющихся заболеваний при воздействии одного и того же ингибитора степень угнетения активности фермента у разных пациентов может варьировать. Примерно 5% всех жителей США имеют генетический дефицит изоформы цитохрома 2-6, который участвует в метаболизме бета - блокаторов, нейролептиков и антидепрессантов. У этих пациентов не бывает ингибирования этой формы фермента хинидином, что наблюдается у всей остальной популяции. Ингибирование изоформы 3А встречается часто и вызывается большим количеством препаратов, часто применяющихся в практике отделения интенсивной терапии. Это могут быть: кетоконазол, флюконазол, циклоспорин, ритонавир, дилтиазем, нифедипин, никардипин, флуоксетин, хинидин, верапамил и эритромицин. Это быстро обратимые ингибиторы. Путь введения лекарственного препарата влияет на скорость развития и выраженность угнетения активности фермента. Например, если препарат вводится внутривенно, то взаимодействие разовьется быстрее.



    ИЗМЕНЕНИЯ ВЫДЕЛЕНИЯ



    Высокополярные вещества или растворимые в воде метаболиты жирорастворимых веществ выделяются почками, однако нельзя забывать, что в меньшей степени они выделяются печенью, с потом и грудным молоком. Водорастворимые вещества, находящиеся в крови, могут выделяться с мочой путем пассивной клубочковой фильтрации, активной канальцевой секреции или путем блокады активной, или чаще пассивной канальцевой реабсорбции.

    Препараты, снижающие скорость клубочковой фильтрации (СКФ) обычно снижают фильтрационное давление либо вследствие уменьшения внутрисосудистого объема, либо снижения артериального давления, либо сосудистого тонуса почечных артерий. Снижение СКФ препаратом – объектом, например, фуросемидом, может, в свою очередь, ограничить пассивную фильтрацию лекарства – мишени, например, аминогликозидов, что приводит к повышению их концентрации в крови. В это же самое время нефротоксичные препараты, такие, как те же аминогликозиды, могут уменьшать количество функционирующих нефронов и снижать СКФ, что приводит к накоплению в организме других препаратов, таких, как дигоксин, которые выводятся практически только почками. Хотя это – непрямое взаимодействие, оно имеет огромное значение для пациентов ОИТ, и его можно избежать путем тщательного подбора доз препаратов.

    Многие растворимые в воде органические кислоты активно секретируются в первую очередь в проксимальной части канальца. Активный энергозависимый транспорт органических анионов и катионов – это уникальная система. Ингибирование этих специфических систем лекарственными препаратами могут привести к накоплению препарата – мишени. Конкуренция за транспортные системы эндогенными (например, мочевая кислота) и экзогенными веществами (пенициллинами, пробенецидом, нестероидными противовспалительными препаратами, метотрексатом, сульфаниламидами и цефалоспоринами) может привести к развитию клинически значимых лекарственных взаимодействий. Примером такого взаимодействия можно проследить на примере хинидина и дигоксина. Как уже говорилось ранее, изменения метаболизма дигоксина в органах и тканях могут возникать при одновременном назначении этих двух препаратов. Происходит относительное изменение объема распределения препарата и одновременно взаимодействие другого рода – конкуренция за транспортные системы в почках. Снижение выведения дигоксина почками и одновременное изменение метаболизма препарата могут привести к удвоению концентрации препарата в крови. Этот тип лекарственного взаимодействия в прошлом использовался в терапевтических целях. Препарат пробенецид использовался для повышения концентрации в организме пенициллина. Реабсорбция отфильтрованных и выделенных лекарственных препаратов происходит в дистальной части канальца и в собирательных трубочках. На этот процесс влияют изменения концентрации препаратов, объемная скорость диуреза, и рН мочи по сравнению с таковым для сыворотки крови. При изменении рН мочи в дистальной части канальцев изменяется транспорт органических оснований и кислот. Эти ионизированные вещества не проходят через мембрану канальцев почек напрямую, что увеличивает скорость их экскреции. Важный и клинически значимый пример таких взаимодействий – это использование бикарбоната натрия для ощелачивания мочи и ускорения выведения аспирина или салицилатов при отравлении этими веществами. Поскольку рН изменяется в логарифмической зависимости, при возрастании этого показателя на одну единицу приводит к ускорению почечной экскреции в десять раз. Урикозурический эффект пробенецида связан с блокированием препаратом активной реабсорбции эндогенной мочевой кислоты из проксимальной части почечных канальцев.

    Аспирин также угнетает реабсорбцию мочевой кислоты, однако если его применять совместно с пробенецидом, то аспирин ликвидирует урикозурический эффект последнего. Непрямые лекарственные взаимодействия могут влиять как на механизмы экскреции, так и реабсорбции. Литий реабсорбируется в почках вместе с натрием, по одному и тому же механизму. При уменьшении внутрисосудистого объема, например, при использовании тиазидовых диуретиков, компенсаторно увеличивается реабсорбция натрия и лития в проксимальных канальцах, что в некоторых ситуациях может привести к накоплению в организме токсичных количеств лития.

    Активность микросомных монооксигеназ , катализирующих биотрансформацию ксенобиотиков в первой фазе детоксикации, а также активность ферментов, принимающих участие в реакциях конъюгации, составляющих вторую фазу детоксикации, зависит от многих факторов. Например, от функционального состояния организма, от возраста и пола, от режима питания, имеют место сезонные и суточные колебания активности и др.

    Однако наиболее выраженное действие на функционирование биохимических систем , ответственных за процессы детоксикации, оказывают химические вещества, относящиеся к индукторам и ингибиторам микросомных монооксигеназ. Комбинированное действие ксенобиотиков зачастую определяется именно индукторными или ингибиторными свойствами участвующих в комбинациях соединений. Индукторы или ингибиторы микросомного окисления могут служить основой для средств профилактики и лечения интоксикаций.

    В настоящее время известно около 300 химических соединений , вызывающих увеличение активности микросомных ферментов, т.е. индукторов. Это, например, барбитураты, бифенилы, спирты и кетоны, полициклические и галогенуглеводороды, некоторые стероиды и многие другие. Они относятся к разнообразным классам химических соединений, но имеют некоторые общие черты. Так, все индукторы являются липоидорастворимыми веществами и характеризуются тропизмом по отношению к мембранам эндоплазматического ретикулума.

    Индукторы являются субстратами микросомных ферментов. Имеется прямая корреляция между мощностью индукторов и периодом их полусуществования в организме. Индукторы также могут обладать определенной специфичностью по отношению к чужеродным веществам или иметь широкий спектр действия. Более подробно обо всем этом и многом ином можно прочитать в следующих книгах и монографиях.

    Многое из сказанного выше относится и к ингибиторам микросомных монооксигеназ , точно так же, как и ссылки на главу Л.А.Тиунова и др. К числу ингибиторов относятся вещества из самых разных классов химических соединений. С одной стороны, это могут быть весьма сложные органические соединения, а с другой - простые неорганические соединения типа ионов тяжелых металлов. Нами, в частности, описан и применен на практике с целью увеличения противоопухолевой активности известных противоопухолевых препаратов ингибитор метаболизма ксенобиотиков гидразин сернокислый.

    Перспективным считается применение ингибиторов для увеличения активности пестицидов . В том и другом случаях модифицирующее действие ингибиторов основано на задержке или предотвращении метаболизма исходных соединений, что при подборе соответствующей дозы и схемы применения ингибиторов дает возможность изменять силу и качество эффекта.

    По механизму действия ингибиторы метаболизма подразделяются на 4 группы . К первой из них относят обратимые ингибиторы прямого действия: это эфиры, спирты, лактоны, фенолы, антиоксиданты и др. Вторую группу составляют обратимые ингибиторы непрямого действия, оказывающие влияние на микросомные ферменты через промежуточные продукты своего метаболизма путем образования комплексов с цитохромом Р-450. В этой группе производные бензола, алкиламины, ароматические амины, гидразины и др. Третья группа включает необратимые ингибиторы, разрушающие цитохром Р-450 - это полигалогенированные алканы, производные олефинов, производные ацетилена, серосодержащие соединения и др.

    Наконец, к четвертой группе относятся ингибиторы , тормозящие синтез и/или ускоряющие распад цитох-рома Р-450. Типичными представителями группы являются ионы металлов, ингибиторы синтеза белка и вещества, влияющие на синтез гема.

    До сих пор речь шла только о микросомных механизмах метаболизма ксенобиотиков. Однако" имеются и другие, внемикросомные механизмы. Это второй тип метаболических превращений, он включает реакции немикросомного окисления спиртов, альдегидов, карбоновых кислот, алкиламинов, неорганических сульфатов, 1,4-нафтохинонов, сульфоксидов, органических дисульфидов, некоторых эфиров; с его помощью происходит гидролиз эфирной и амидной связей, а также гидролитическое дегалогенирование. Ниже перечислены некоторые из ферментов, участвующих во внемикросомном метаболизме ксенобиотиков: моноаминоксидаза, диаминоксидаза, алкогольдегидрогеназа, альдегиддегидрогеназа, альдегидоксидаза, ксантиноксидаза, эстеразы, амидазы, пероксидазы, каталаза и др. Таким путем метаболизируют преимущественно водорастворимые ксенобиотики. Ниже приведены некоторые примеры.

    Алифатические спирты и альдегиды метаболизируют преимущественно в печени млекопитающих, Так, 90-98 % этанола, поступившего в организм, метаболизирует в клетках печени и лишь 2-10 % в почках и легких. При этом часть этанола вступает в реакции глюкуронидной конъюгации и выводится из организма; другая часть подвергается окислительным превращениям. Соотношение этих процессов зависит от вида животных, от химического строения спирта и от его концентрации. При действии низких концентраций алифатических спиртов главным путем их биотрансформации в организме является окислительный путь с помощью алкогольдегидрогеназы.

    В основном внемикросомный механизм метаболизма используется для детоксикации цианидов. При этом главной реакцией является вытеснение цианогруппой сульфитной группы из молекулы тиосульфата. Образующийся тиоцианат практически нетоксичен.

    Деление механизмов детоксикации на микросомные и внемикросомные несколько условно. Метаболизм ряда групп химических соединений можетность смешанный характер, как это следует из примера со спиртами. Как уже кратко описано выше, монооксигеназная система, содержащая цитохром Р-450 в виде его различных изоформ, защищает внутреннюю среду организма от накопления в ней токсических соединений. Принимая участие в первой фазе метаболизма ксенобиотиков - превращая низкомолекулярные ксенобиотики с низкой растворимостью в воде в более растворимые соединения - она облегчает их выведение из организма. Однако эта их функция может представлять и серьезную опасность для организма, что встречается не так уже и редко.

    Дело в том, что механизм реакций окисления предусматривает образование в организме промежуточных реакционноспособных метаболитов, относящихся к двум типам. Прежде всего это продукты частичного восстановления кислорода: перекись водорода и супероксидные радикалы, которые являются источниками наиболее реакционноспособных гидрофильных радикалов. Последние способны окислять самые различные молекулы в клетке. Другой тип - это реакционноспособные метаболиты окисляемых веществ. Уже в незначительных количествах эти метаболиты могут оказывать те или иные побочные эффекты: канцерогенные, мутагенные, аллергенные и иные, в основе которых лежит их способность ковалентно связываться с биологическими макромолекулами - белками, нуклеиновыми кислотами, липидами биомембран. Внимание на указанные здесь обстоятельства обратили не так уж давно и в основном вследствие развития представлений о молекулярных механизмах процессов детоксикации. Но именно эти представления позволили объяснить многие, казавшиеся ранее непонятными факты высокой токсичности некоторых соединений в определенных условиях.

    На 16-м Европейском рабочем совещании по метаболизму ксенобиотиков (июнь 1998 г.) были представлены многочисленные примеры модификации токсичности ксенобиотиков. В частности, 2,6-дихлорметилсульфо-нилбензол (2,6-ДХБ) образует в обонятельной системе мышей токсические метаболиты, а 2,5-ДХБ не образует. Метаболизм бензола в печени одних линий мышей приводит к образованию токсических метаболитов, других - нет, причем зависит это от активности цитохрома Р-450. Метаболическая активация противоопухолевых соединений у разных видов различна; различие может относиться и к разным особям. Изозимы цитохрома Р-450 определяют различие в кинетике метаболизма ксенобиотиков. На основе развитых представлений предложена тест-система in vitro для определения метаболизма и токсичности ксенобиотиков по отношению к печени, легким, кишечнику и почкам разных индивидуумов человека. Указано на обязательное проведение терапевтического мониторинга при лечении алкоголизма дисульфирамом: необходимо назначать лечебную дозу препарата в зависимости от особенностей его метаболизма у разных особей, а не в зависимости от массы тела пациента, как это принято. Примеры можно видеть и в трехтомной Encyclopedia of Toxicol.


    К взаимодействиям, снижающим концентрацию лекарственных веществ, относятся:

    Уменьшение всасывания в ЖКТ.

    Индукция печеночных ферментов.

    Снижение клеточного захвата.

    I.Уменьшение всасывания в ЖКТ.

    II.Индукция печеночных ферментов.

    Если главный путь элиминации препарата - метаболизм, то ускорение метаболизма приводит к снижению концентрации препарата в органах-мишенях. Большая часть лекарственных веществ метаболизируется в печени - органе с большой клеточной массой, высоким кровотоком и содержанием ферментов. Первая реакция в метаболизме многих препаратов катализируется микросомальными ферментами печени, связанными с цитохромом Р450 и содержащимися в эндоплазматическом ретикулуме. Эти ферменты окисляют молекулы лекарственных средств с помощью различных механизмов - гидроксилирования ароматического кольца, N-деметилирования, О-деметилирования и сульфоокисления. Молекулы продуктов этих реакций обычно более полярны, чем молекулы их предшественников, и потому легче удаляются почками.

    Экспрессия некоторых изоферментов цитохрома Р450 регулируется, и их содержание в печени может увеличиваться под действием некоторых лекарственных средств.

    Типичное вещество, вызывающее индукцию микросомальных ферментов печени, - это фенобарбитал . Так же действуют и другие барбитураты . Индуцирующий эффект фенобарбитала проявляется уже в дозе 60 мг/сут.

    Индукцию микросомальных ферментов печени вызывают также рифампицин , карбамазепин , фенитоин , глутетимид ; она наблюдается у курильщиков , при воздействии хлорсодержащих инсектицидов типа ДДТ и постоянном употреблении алкоголя .

    Фенобарбитал, рифампицин и другие индукторы микросомальных ферментов печени вызывают снижение сывороточной концентрации многих лекарственных средств, и в том числе - варфарина , хинидина , мексилетина , верапамила , кетоконазола , итраконазола , циклоспорина , дексаметазона , метилпреднизолона , преднизолона (активного метаболита преднизона), стероидных пероральных контрацептивов , метадона , метронидазола и метирапона . Эти взаимодействия имеют большое клиническое значение. Так, если у больного на фоне непрямых антикоагулянтов достигается должный уровень свертываемости крови, но одновременно он принимает какой-либо индуктор микросомальных ферментов печени, то при отмене последнего (например, при выписке) сывороточная концентрация антикоагулянта возрастет. В результате может возникнуть кровоточивость.

    Существуют значительные индивидуальные различия в индуцируемости ферментов метаболизма лекарственных средств. У одних больных фенобарбитал резко повышает этот метаболизм, у других - почти не влияет.

    Фенобарбитал не только вызывает индукцию некоторых изоферментов цитохрома Р450 , но и усиливает печеночный кровоток, стимулирует секрецию желчи и транспорт органических анионов в гепатоцитах.

    Некоторые лекарственные вещества могут усиливать также конъюгацию других веществ с билирубином .

    III.Снижение клеточного захвата.

    Производные гуанидина , используемые для лечения артериальной гипертонии ( гуанетидин и гуанадрел), переносятся в адренергические нейроны благодаря активному транспорту биогенных аминов. Физиологическая роль этого транспорта - обратный захват адренергических медиаторов, но с его помощью могут переноситься против концентрационного градиента и многие другие сходные по структуре соединения, включая производные гуанидина.

    В.Г. Кукес, Д.А. Сычёв, Г.В. Раменская, И.В. Игнатьев

    Человек ежедневно подвергается воздействию множества инородных химических веществ, называемых «ксенобиотики». Ксенобиотики попадают в организм человека через лёгкие, кожу и из пищеварительного тракта в составе примесей воздуха, пищи, напитков, ЛС. Некоторые ксенобиотики не оказывают никакого воздействия на организм человека. Однако большинство ксенобиотиков могут вызывать биологические ответные реакции. Организм реагирует на ЛС так же, как и на любой другой ксенобиотик. При этом ЛС становятся объектами различных механизмов воздействия со стороны организма. Это, как правило, приводит к нейтрализации и элиминации (выведению) ЛС. Некоторые, легко растворимые в воде, ЛС элиминируются почками в неизменённом виде, другие вещества предварительно подвергаются воздействию ферментов, изменяющих их химическое строение. Таким образом, биотрансформация - общее понятие, включающее все химические изменения, происходящие с ЛС в организме. Результат биологической трансформации ЛС: с одной стороны - снижается растворимость веществ в жирах (липофильность) и повышается их растворимость в воде (гидрофильность), а с другой стороны - изменяется фармакологическая активность препарата.

    Снижение липофильности и повышение гидрофильности лекарственных средств

    Небольшое число ЛС способно выводиться почками в неизменён- ном виде. Чаще всего эти препараты представляют «малые молекулы» или они способны находиться в ионизированном состоянии при физиологических значениях рН. Большинство ЛС не обладают такими физико-химическими свойствами. Фармакологически активные органические молекулы чаще липофильны и остаются неионизированными при физиологических значениях рН. Эти ЛС обычно связаны с белками плазмы, плохо фильтруются в почечных клубочках и одновременно легко реабсорбируются в почечных канальцах. Биотрансформация (или система биотрансформации) направлена на повышение растворимости молекулы ЛС (повышение гидрофильности), что способствует выведению его из организма с мочой. Иными словами, липофильные ЛС превращаются в гидрофильные и, следовательно, в более легковыводимые соединения.

    Изменение фармакологической активности лекарственных средств

    Направления изменения фармакологической активности ЛС в результате биотрансформации.

    Фармакологически активное вещество превращается в фармакологически неактивное (это характерно для большинства ЛС).

    Фармакологически активное вещество на первом этапе превращается в другое фармакологически активное вещество (табл. 5-1).

    Неактивное фармакологическое ЛС превращается в организме в фармакологически активное вещество; такие препараты называют «пролекарства» (табл. 5-2).

    Таблица 5-1. Лекарственные средства, метаболиты которых сохраняют фармакологическую активность

    Окончание таблицы 5-1

    Таблица 5-2. Пролекарства

    Окончание таблицы 5-2

    * Фенацетин снят с производства из-за выраженных побочных эффектов, в частности, нефротоксичности («фенацетиновый нефрит»).

    Следует отметить, что эффективность и безопасность применения ЛС (перечислены в табл. 5-1), имеющих активные метаболиты, зависят не только от фармакокинетики собственно ЛС, но и от фармакокинетики их активных метаболитов.

    5.1. ПРОЛЕКАРСТВА

    Одна из целей создания пролекарств - улучшение фармакокинетических свойств; это ускоряет и увеличивает всасывание веществ. Так, были разработаны сложные эфиры ампициллина (пивампицин p , талампицин p и бикампицин p), в отличие от ампициллина практически полностью всасывающиеся при приёме внутрь (98-99%). В печени эти препараты под действием карбоксиэстераз гидролизуются до ампициллина, обладающего антибактериальной активностью.

    Биологическая доступность противовирусного ЛС валацикловира составляет 54%, в печени он превращается в ацикловир. Следует отметить, что биодоступность собственно ацикловира не превышает 20%. Высокая биодоступность валацикловира обусловлена наличием в его молекуле остатка аминокислоты валина. Именно поэтому валацикловир всасывается в кишечнике путём активного транспорта с помощью транспортёра олигопептидов PEPT 1.

    Ещё один пример: ингибиторы аденозинпревращающего фермента, содержащие карбоксильную группу (эналаприл, периндоприл, трандолаприл, хвинаприл, спираприл, рамиприл и др.). Так, эналаприл всасывается при приёме внутрь на 60%, гидролизуется в печени под влиянием карбоксиэстераз до активного эналаприлата. Необходимо отметить: эналаприлат при введении внутрь всасывается лишь на 10%.

    Другая цель разработки пролекарств - повышение безопасности лекарственных веществ. Например, учёные создали сулиндак p - НПВС. Данный препарат изначально не блокирует синтез простагландинов. Лишь в печени сулиндак p гидролизуется с образованием активного сульфида сулиндака p (именно это вещество обладает противовоспалительной активностью). Предполагали, что сулиндак p не будет обладать ульцерогенным действием. Однако ульцерогенность НПВС обусловлена не местным, а «системным» действием, поэтому, как показали исследования, частота возникновения эрозивно-язвенных поражений органов пищеварения при приёме сулиндака p и других НПВС примерно одинакова.

    Ещё одна цель создания пролекарств - повышение избирательности действия ЛС; это увеличивает эффективность и безопасность препаратов. Дофамин используют для усиления почечного кровотока при острой почечной недостаточности, однако препарат влияет на миокард и сосуды. Отмечают повышение АД, развитие тахикардии и аритмий. Присоединение к дофамину остатка глутаминовой кислоты позволило создать новый препарат - глутамил-дофа p . Глутамил-дофа p гидролизуется до дофамина только в почках под влиянием глутамилтранспептидазы и декарбоксилазы L-ароматических аминокислот и таким образом практически не оказывает нежелательного действия на центральную гемодинамику.

    Рис. 5-1. Фазы биотрансформации лекарственных средств (Katzung В., 1998)

    5.2. ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Процессы биотрансформации большинства ЛС происходят в печени. Однако биотрансформация ЛС может протекать и в других органах, например, в пищеварительном тракте, лёгких, почках.

    В целом, все реакции биотрансформации ЛС можно отнести к одной из двух категорий, обозначаемых как фаза биотрансформации I и фаза биотрансформации II.

    Реакции I фазы (несинтетические реакции)

    В процессе несинтетических реакций ЛС переходят в более полярные и лучше растворимые в воде (гидрофильные) соединения, чем исходное вещество. Изменения исходных физико-химических свойств ЛС обусловлены присоединением или освобождением активных функциональных групп: например, гидроксильных (-ОН), сульфгидрильных (-SH), аминогрупп (-NH 2). Основные реакции I фазы - реакции окисления. Гидроксилирование - наиболее распространённая реакция окисления - присоединение гидроксильного радикала (-ОН). Таким образом, можно считать, что в I фазу биотрансформации происходит «взлом» молекулы ЛС (табл. 5-3). Катализаторы указанных реакций - ферменты, называемые «оксидазы со смешанной функцией». В целом, субстратная специфичность этих ферментов очень низка, поэтому они окисляют различные лекарственные вещества. К другим, менее частым реакциям I фазы, относят процессы восстановления и гидролиза.

    Реакции II фазы (синтетические реакции)

    Реакции II фазы биотрансформации, или синтетические реакции, представляют соединение (конъюгацию) ЛС и/или его метаболитов с эндогенными веществами, в результате образуются полярные, хорошо растворимые в воде конъюгаты, легко выводимые почками или с желчью. Для вступления в реакцию II фазы молекула должна обладать химически активным радикалом (группировкой), к которому может присоединиться конъюгирующая молекула. Если активные радикалы присутствуют в молекуле ЛС изначально, тогда реакция конъюгации протекает, минуя реакции I фазы. Иногда молекула лекарственного вещества приобретает активные радикалы в ходе реакций I фазы (табл. 5-4).

    Таблица 5-3. Реакции I фазы (Katzung 1998; с дополнениями)

    Таблица 5-4. Реакции II фазы (Katzung 1998; с дополнениями)

    Следует отметить, что препарат в процессе биотрансформации может превращаться только за счёт реакций I фазы, либо - исключительно за счёт реакций II фазы. Иногда часть ЛС метаболизируется путём реакций I фазы, а часть - путём реакций II фазы. Кроме того, существует возможность последовательного прохождения реакций I и II фазы (рис. 5-2).

    Рис. 5-2. Функционирование системы оксидаз со смешанной функцией

    Эффект первого прохождения через печень

    Биотрансформация большинства ЛС осуществляется в печени. ЛС, метаболизм которых протекает в печени, подразделяют на две подгруппы: вещества с высоким печёночным клиренсом и вещества с низким печёночным клиренсом.

    Для ЛС с высоким печёночным клиренсом характерна высокая степень извлечения (экстракции) из крови, что обусловлено значительной активностью (ёмкостью) метаболизирующих их ферментных систем (табл. 5-5). Поскольку такие ЛС быстро и легко метаболизируются в печени, клиренс их зависит от величины и скорости печёночного кровотока.

    ЛС с низким печёночным клиренсом. Печёночный клиренс зависит не от скорости печёночного кровотока, а от активности ферментов и степени связывания ЛС с белками крови.

    Таблица 5-5. Лекарственные средства с высоким печёночным клиренсом

    При одинаковой ёмкости ферментных систем лекарственные вещества, в значительной степени связанные с белками (дифенин, хинидин, толбутамид), будут иметь низкий клиренс, по сравнению со слабосвязанными с белками ЛС (теофиллин, парацетамол). Ёмкость ферментных систем - не постоянная величина. Например, уменьшение ёмкости ферментных систем регистрируют при увеличении дозы ЛС (вследствие насыщения ферментов); это может привести к увеличению биологической доступности ЛС.

    При приёме внутрь ЛС с высоким печёночным клиренсом, они всасываются в тонкой кишке и через систему воротной вены поступают в печень, где подвергаются активному метаболизму (на 50-80%) ещё до поступления в системное кровообращение. Этот процесс известен как пресистемная элиминация, или эффект «первого прохождения» («first-pass effect»). В результате такие ЛС имеют низкую биологическую доступность при приёме внутрь, при этом абсорбция их может составлять почти 100%. Эффект первого прохождения характерен для таких препаратов, как аминазин, ацетилсалициловая кислота, вера-

    памил, гидралазин, изопреналин, имипрамин, кортизон, лабетолол, лидокаин, морфин. Метопролол, метилтестостерон, метоклопрамид, нортриптилин p , окспренолол p , органические нитраты, пропранолол, резерпин, салициламид, морацизин (этмозин) и некоторые другие препараты также подвергаются пресистемной элиминации. Следует отметить, что незначительная биотрансформация ЛС может проходить и в других органах (просвете и стенке кишечника, лёгких, плазме крови, почках и других органах).

    Как показали исследования последних лет, эффект первого прохождения через печень зависит не только от процессов биотрансформации ЛС, но и от функционирования транспортёров ЛС, и, прежде всего, гликопротеина-Р и транспортёров органических анионов и катионов (см. «Роль транспортёров лекарственных средств в фармакокинетических процессах»).

    5.3. ФЕРМЕНТЫ I ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Микросомальная система

    Многие ферменты, метаболизирующие ЛС, располагаются на мембранах эндоплазматического ретикулума (ЭПР) печени и других тканей. При изоляции мембран ЭПР путём гомогенизации и фракционирования клетки, мембраны преобразуются в везикулы, называемые «микросомы». Микросомы сохраняют большинство морфологических и функциональных характеристик интактных мембран ЭПР, включая свойство шероховатости или гладкости поверхности, соответственно шероховатого (рибосомального) и гладкого (нерибосомального) ЭПР. В то время как шероховатые микросомы в основном связаны с синтезом белка, гладкие - относительно богаты ферментами, ответственными за окислительный метаболизм лекарственных веществ. В частности, гладкие микросомы содержат ферменты, известные как оксидазы со смешанной функцией, или монооксигеназы. Активность этих ферментов требует присутствия как восстанавливающего агента - никотинамидадениндинуклеотидфосфата (НАДФ-Н), так и молекулярного кислорода. При типичной реакции расходуется (восстанавливается) одна молекула кислорода на одну молекулу субстрата, при этом один кислородный атом включается в продукт реакции, а другой образует молекулу воды.

    В этом окислительно-восстановительном процессе ключевую роль играют два микросомальных фермента.

    Флавопротеин НАДФ-Н-цитохром Р-450-редуктаза. Один моль этого фермента содержит по одному молю флавинмононуклеотида и флавинадениндинуклеотида. Поскольку цитохром С может служить акцептором электрона, то указанный фермент часто называют НАДФ-цитохром С-редуктазой.

    Гемопротеин, или цитохром Р-450 выполняет функцию конечной оксидазы. В действительности микросомальная мембрана содержит множество форм данного гемопротеина, и эта множественность возрастает при повторном введении ксенобиотиков. Относительное изобилие цитохрома Р-450, по сравнению с редуктазой печени, делает процесс восстановления гема цитохрома Р-450 лимитирующей стадией в процессе окисления лекарственных веществ в печени.

    Процесс микросомального окисления ЛС требует участия цитохрома Р-450, цитохрома Р-450-редуктазы, НАДФ-Н и молекулярного кислорода. Упрощённая схема окислительного цикла представлена на рисунке (рис. 5-3). Окисленный (Fe3+) цитохром Р-450 соединяется с лекарственным субстратом с образованием бинарного комплекса. НАДФ-Н - донор электрона для флавопротеинредуктазы, которая, в свою очередь, восстанавливает окисленный комплекс цитохром Р-450-лекарство. Второй электрон переходит от НАДФ-Н через ту же флавопротеинредуктазу, восстанавливающую молекулярный кислород и формирующую комплекс «активированный кислород»-цитохром Р-450-субстрат. Этот комплекс переносит «активированный кислород» на лекарственный субстрат с образованием окисленного продукта.

    Цитохром Р-450

    Цитохром Р-450, в литературе часто обозначаемый CYP, представляет группу ферментов, осуществляющих не только метаболизм ЛС и других ксенобиотиков, но и участвующих в синтезе глюкокортикоидных гормонов, желчных кислот, простаноидов (тромбоксана А2, простациклина I2), холестерина. Впервые цитохром Р-450 идентифицировали Klingenberg и Garfincell в микросомах печени крысы в 1958 году. Филогенетические исследования показали, что цитохромы Р-450 появились в живых организмах около 3,5 млрд лет назад. Цитохром Р-450 - гемопротеин: он содержит гем. Название цитохрома Р-450 связано с особыми свойствами этого гемопротеина. В восстановлен-

    ной форме цитохром Р-450 связывает монооксид углерода с образованием комплекса с максимальным поглощением света при длине волны 450 нм. Это свойство объясняют тем, что в геме цитохрома Р-450 железо связано не только с атомами азота четырёх лигандов (при этом образуя порфириновое кольцо). Существуют также пятый и шестой лиганды (сверху и снизу кольца гема) - атом азота гистидина и атом серы цистеина, входящие в состав полипептидной цепи белковой части цитохрома Р-450. Наибольшее количество цитохрома Р-450 располагается в гепатоцитах. Однако цитохром Р-450 обнаруживают и в других органах: в кишечнике, почках, лёгких, надпочечниках, головном мозге, коже, плаценте и миокарде. Важнейшее свойство цитохрома Р-450 - способность метаболизировать практически все известные химические соединения. Наиболее важная реакция - гидроксилирование. Как уже указывалось, цитохромы Р-450 ещё называют монооксигеназами, так как они включают один атом кислорода в субстрат, окисляя его, а один - в воду, в отличие от диоксигеназ, которые включают оба атома кислорода в субстрат.

    Цитохром Р-450 имеет множество изоформ - изоферментов. В настоящее время выделено более 1000 изоферментов цитохрома Р-450. Изоферменты цитохрома Р-450, по классификации Nebert (1987), принято разделять по близости (гомологии) нуклеотид/амино- кислотной последовательности на семейства. В свою очередь, семейства подразделяют на подсемейства. Изоферменты цитохрома Р-450 с идентичностью аминокислотного состава более 40% объединены в семейства (выделено 36 семейств, 12 из них обнаружены у млекопитающих). Изоферменты цитохрома Р-450 с идентичностью аминокислотного состава более 55% объединены в подсемейства (выделено 39 подсемейств). Семейства цитохромов Р-450 принято обозначать римскими цифрами, подсемейства - римскими цифрами и латинской буквой.

    Схема обозначения отдельных изоферментов.

    Первый символ (вначале) - арабская цифра, обозначающая семейство.

    Второй символ - латинская буква, обозначающая подсемейство.

    В конце (третий символ) указывают арабскую цифру, соответствующую изоферменту.

    Например, изофермент цитохрома Р-450, обозначенный как CYP3A4, принадлежит к семейству 3, подсемейству IIIA. Изоферменты цитохрома Р-450 - представители различных семействи подсемейств-

    различаются регуляторами активности (ингибиторы и индукторы) и субстратной специфичностью 1 . Например, CYP2C9 метаболизирует исключительно S-варфарин, в то время как R-варфарин метаболизируют изоферменты CYP1A2 и CYP3A4.

    Однако члены отдельных семейств, подсемейств и отдельные изоферменты цитохрома Р-450 могут обладать перекрёстной субстратной специфичностью, а также иметь перекрёстные ингибиторы и индукторы. Например, ритонавир (противовирусный препарат) метаболизируют принадлежащие к различным семействам и подсемействам 7 изоферментов (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4). Циметидин одновременно ингибирует 4 изофермента: CYP1A2, СYP2C9, CYP2D6 и CYP3A4. В метаболизме ЛС принимают участие изоферменты цитохрома Р-450 I, II и III семейств. CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2C9, CYP209, CYP2E1, CYP3A4 - наиболее важные для метаболизма лекарственных веществ и хорошо изученные изоферменты цитохрома Р-450. Содержание различных изоферментов цитохрома Р-450 в печени человека, а также их вклад в окисление ЛС различны (табл. 5-6). Лекарственные вещества - субстраты, ингибиторы и индукторы изоферментов цитохрома Р-450 представлены в приложении 1.

    Таблица 5-6. Содержание изоферментов цитохрома Р-450 в печени человека и их вклад в окисление лекарственных средств (Lewis и соавт., 1999)

    1 Некоторые изоферменты цитохрома Р-450 обладают не только субстратной специфичностью, но и стереоспецифичностью.

    До сих пор не известны эндогенные субстраты для изоферментов семейства CYPI. Эти изоферменты метаболизируют ксенобиотики: некоторые ЛС и ПАУ - основные компоненты табачного дыма и продукты сжигания органического топлива. Отличительная особенность изоферментов семейства СYPI - их способность к индукции под действием ПАУ, в том числе, диоксина и 2,3,7,8-тетрахлорди- бензо-р-диоксина (TCDD). Поэтому семейство СYPI в литературе называют «цитохром, индуцибельный ПАУ»; «диоксин-индуцибельный цитохром» или «ТСDD-индуцибельный цитохром». В организме человека семейство СYPI представлено двумя подсемействами: IА и IB. В состав подсемейства IA входят изоферменты 1А1 и 1А2. В состав подсемейства IB входит изофермент 1В1.

    Изофермент 1А1 цитохрома Р-450 (CYP1A1) обнаруживают в основном в лёгких, в меньшей степени - в лимфоцитах и плаценте. CYP1A1 не участвует в метаболизме ЛС, однако в лёгких этот изофермент активно метаболизирует ПАУ. При этом некоторые ПАУ, например, бензопирен и нитрозамины превращаются в канцерогенные соединения, способные спровоцировать развитие злокачественных новообразований, в первую очередь - рака лёгких. Этот процесс получил название «биологическая активация канцерогенов». Как и другие цитохромы семейства CYPI, CYP1A1 индуцируется ПАУ. При этом изучен механизм индукции CYP1A1 под влиянием ПАУ. Проникнув в клетку, ПАУ соединяются с Аh-рецептором (белок из класса регуляторов транскрипции); образовавшийся комплекс ПАУ-Ап-рецептор проникает в ядро при помощи другого белка - ARNT, а затем стимулирует экспрессию гена CYP1A1, связываясь со специфическим диоксин-чувствительным участком (сайтом) гена. Таким образом, у курящих людей процессы индукции CYP1A1 протекают наиболее интенсивно; это приводит к биологической активации канцерогенов. Именно этим объясняют высокий риск возникновения рака легких у курильщиков.

    Изофермент 1А2 цитохрома Р-450 (CYP1A2) обнаруживают в основном в печени. В отличие от цитохрома CYP1A1, CYP1A2 метаболизирует не только ПАУ, но и ряд ЛС (теофиллин, кофеин и другие препараты). В качестве маркёрных субстратов для фенотипирования CYP1A2 используют фенацетин, кофеин и антипирин. При этом фенацетин подвергают О-деметилированию, кофеин - 3-деметилированию, а антипирин - 4-гидроксилированию. Оценка

    клиренса кофеина - важный диагностический тест, позволяющий определить функциональное состояние печени. В связи с тем, что CYP1A2 - главный метаболизирующий фермент кофеина, по сути, в данном тесте определяют активность указанного изофермента. Пациенту предлагают принять внутрь кофеин, меченный радиоактивным изотопом углерода С 13 (С 13 -кофеин), затем выдыхаемый пациентом воздух в течение часа собирают в специальный резервуар и анализируют. При этом в выдыхаемом пациентом воздухе содержится радиоактивный углекислый газ (С 13 О 2 - образован радиоактивным углеродом) и обычный углекислый газ (С 12 О 2). По соотношению в выдыхаемом воздухе С 13 О 2 к С 12 О 2 (измеряют с помощью масс-спектроскопии) определяют клиренс кофеина. Существует модификация этого теста: методом высокоэффективной жидкостной хроматографии определяют концентрацию кофеина и его метаболитов в плазме крови, моче и слюне, взятых натощак. В этом случае определённый вклад в метаболизм кофеина вносят цитохромы CYP3A4 и CYP2D6. Оценка клиренса кофеина - надёж- ный тест, позволяющий оценить функциональное состояние печени при её выраженном поражении (например, при циррозе печени) и определить степень нарушений. К недостаткам теста относят его недостаточную чувствительность при умеренном поражении печени. На результат теста влияют курение (индукция CYP1A2), возраст, совместное применение ЛС, изменяющих активность изоферментов цитохрома Р-450 (ингибиторов или индукторов).

    Подсемейство цитохрома Р-450 CYPIIA

    Из изоферментов подсемейства CYPIIA наиболее важную роль в метаболизме ЛС играет изофермент цитохрома Р-450 2А6 (CYP2A6). Общее свойство изоферментов подсемейства CYPIIA - способность к индукции под действием фенобарбитала, поэтому подсемейство CYPIIA называют фенобарбитал-индуцибельными цитохромами.

    Изофермент цитохрома Р-450 2А6 (CYP2A6) обнаруживают, в основном, в печени. CYP2A6 метаболизирует небольшое число ЛС. С помощью данного изофермента происходит превращение никотина в котинин, а также котинина в 3-гидроксикотинин; 7-гидроксили- рование кумарина; 7-гидроксилирование циклофосфана. CYP2A6 вносит определённый вклад в метаболизм ритонавира, парацетамола и вальпроевой кислоты. CYP2A6 принимает участие в биологической активации компонентов табачного дыма нитрозоаминов - канцерогенов, вызывающих рак лёгких. CYP2A6 способствует биоактивации

    мощных мутагенов: 6-амино-(х)-ризена и 2-амино-3-метилмидазо- (4,5-f)-кванолина.

    Подсемейство цитохрома Р450 CYPIIB

    Из изоферментов подсемейства CYPIIB наиболее важную роль в метаболизме ЛС играет изофермент CYP2В6. Общее свойство изоферментов подсемейства CYPIIB - способность к индукции под действием фенобарбитала.

    Изофермент цитохрома Р-450 2В6 (CYP2В6) участвует в метаболизме небольшого числа ЛС (циклофосфамид, тамоксифен, S-метадон p , бупропион р, эфавиренз). В основном CYP2В6 метаболизирует ксенобиотики. Маркёрный субстрат для CYP2В6 - антиконвульсант.

    S-мефенитоин p при этом CYP2В6 подвергает S-мефенитоин p N-деметилированию (определяемый метаболит - N-деметилмефени- тоин). CYP2В6 принимает участие в метаболизме эндогенных стероидов: катализирует 16α-16β-гидроксилирование тестостерона.

    Подсемейство цитохрома Р-450 CYPIIU

    Из всех изоферментов подсемейства цитохрома CYPIIC наиболее важную роль в метаболизме ЛС играют изоферменты цитохрома Р-450 2С8, 2С9, 2С19. Общее свойство цитохромов подсемейства CYPIIC - 4-гидроксилазная активность по отношению к мефенитоину р (противосудорожное ЛС). Мефенитоин р - маркёрный субстрат изоферментов подсемейства CYPIIC. Именно поэтому изоферменты подсемейства CYPIIC называют ещё мефенитоин-4-гидроксилазами.

    Изофермент цитохрома Р-450 2С8 (CYP2C8) принимает участие в метаболизме целого ряда лекарственных веществ (НПВС, статины и другие средства). Для многих ЛС CYP2C8 - «альтернативный» путь биотрансформации. Однако для таких препаратов, как репаглинид (гипогликемическое ЛС, принимаемое внутрь) и таксол (цитостатик), CYP2С8 - основной фермент метаболизма. CYP2С8 катализирует реакцию 6а-гидроксилирования таксола. Маркёрный субстрат CYP2С8 - паклитаксел (цитостатический препарат). В ходе взаимодействия паклитаксела с CYP2С8 происходит 6-гидроксилирование цитостатика.

    Изофермент цитохрома Р-450 2С9 (CYP2C9) содержится, в основном, в печени. CYP2С9 отсутствует в фетальной печени, его обнаруживают только через месяц после рождения. Активность CYP2С9 не меняется в течение всей жизни. CYP2С9 метаболизирует различные лекарственные вещества. CYP2С9 - главный фермент метаболизма

    многих НПВС, в том числе селективных ингибиторов циклоокси- геназы-2, ингибиторов ангиотензиновых рецепторов (лозартана и ирбесартана), гипогликемических препаратов (производных сульфонилмочевины), фенитоина (дифенина ♠), непрямых антикоагулянтов (варфарина 1 , аценокумарола 2), флувастатина 3 .

    Следует отметить, что CYP2С9 имеет «стереоселективность» и метаболизирует в основном S-варфарин и S-аценокумарол, в то время как биотрансформация R-варфарина и R-аценокумарола происходит при помощи других изоферментов цитохрома Р-450: CYP1A2, CYP3A4. Индукторы CYP2С9 - рифампицин и барбитураты. Следует отметить, что практически все сульфаниламидные антибактериальные препараты ингибируют CYP2С9. Однако обнаружен специфический ингибитор CYP2С9 - сульфафеназол р. Существуют данные, что экстракт эхинацеи, пурпурной ингибирует CYP2С9 в исследованиях in vitro и in vivo, а гидролизованный экстракт сои (за счёт содержащихся в нём изофлавонов) ингибирует данный изофермент in vitro. Совместное применение ЛС-субстратов CYP2С9 с его ингибиторами приводит к угнетению метаболизма субстратов. В результате могут возникнуть нежелательные лекарственные реакции субстратов CYP2С9 (вплоть до интоксикации). Например, совместное применение варфарина (субстрат CYP2С9) с сульфаниламидными препаратами (ингибиторы CYP2С9) приводит к усилению антикоагулянтного эффекта варфарина. Именно поэтому при сочетании варфарина с сульфаниламидами рекомендуют выполнять строгий (по крайней мере, 1-2 раза в неделю) контроль международного нормализованного отношения. CYP2С9 обладает генетическим полиморфизмом. «Медленные» аллельные варианты CYP2C9*2 и CYP2C9*3- однонуклеотидные полиморфизмы гена CYP2C9, изученные в настоящее время наиболее полно. У носителей аллельных вариантов CYP2C9*2 и CYP2C9*3 отмечают снижение активности CYP2C9; это приводит к снижению скорости биотрансформации ЛС, метаболизирующихся данным изоферментом и к повышению их концентрации в плазме

    1 Варфарин - рацематическая смесь изомеров: S-варфарина и R-вафрарина. Следует отметить, что большей антикоагулянтной активностью обладает S-варфарин.

    2 Аценокумарол - рацематическая смесь изомеров: S-аценокумарола и R-ацено- кумарола. Однако, в отличие от варфарина, эти два изомера обладают одинаковой антикоагулянтной активностью.

    3 Флувастатин - единственное ЛС из группы гиполипидемических препаратов ингибиторов ГМГ-КоА-редуктазы, метаболизм которого происходит при участии CYP2C9, а не CYP3A4. При этом CYP2C9 метаболизирует оба изомера флувастатина: активный (+)-3R,5S-энантиомер и неактивный (-)-3S,5R-энантиомер.

    крови. Поэтому гетерозиготы (CYP2C9*1/*2, CYP2C9*1/*3) и гомозиготы (CYP2C9*2/*2, CYP2C9*3/*3, CYP2C9*2/*3) - «медленные» метаболизаторы по CYP2C9. Так, именно у этой категории пациентов (носителей перечисленных аллельных вариантов гена CYP2C9) наиболее часто отмечают нежелательные лекарственные реакции при применении ЛС, метаболизм которых происходит под влиянием CYP2C9 (непрямые антикоагулянты, НПВС, применяемые внутрь гипогликемические ЛС - производные сульфонилмочевины).

    Изофермент цитохрома Р-450 2С18 (CYP2C18) содержится в основном в печени. CYP2Cl8 отсутствует в фетальной печени, его обнаруживают только через месяц после рождения. Активность CYP2Cl8 не изменяется в течение всей жизни. CYP2Cl8 вносит определённый вклад в метаболизм таких ЛС, как напроксен, омепразол, пироксикам, пропранолол, изотретиноин (ретиноевая кислота) и варфарин.

    Изофермент цитохрома Р-450 2С19 (CYP2C19) - основной фермент метаболизма ингибиторов протонного насоса. При этом метаболизм отдельных ЛС из группы ингибиторов протонного насоса имеет свои особенности. Так, у омепразола обнаружили два пути метаболизма.

    Под действием CYP2C19 омепразол превращается в гидроксиомепразол. Под действием CYP3A4 гидроксиомепразол переходит в омепразол гидроксисульфон.

    Под действием CYP3A4 омепразол превращается в сульфид омепразола и сульфон омепразола. Под действием CYP2C19 сульфид омепразола и сульфон омепразола переходят в омепразол гидроксисульфон.

    Таким образом, вне зависимости от пути биологической трансформации, конечный метаболит омепразола - омепразол гидроксисульфон. Однако следует отметить, что указанные пути метаболизма характерны, прежде всего, для R-изомера омепразола (S-изомер в значительно меньшей степени подвергается биотрансформации). Понимание этого феномена позволило создать эзопразол р - препарат, представляющий S-изомер омепразола (ингибиторы и индукторы CYP2C19, а также генетический полиморфизм этого изофермента в меньшей степени влияют на фармакокинетику эзопразола р).

    Метаболизм лансопразола идентичен метаболизму омепразола. Рабепразол метаболизируется при участии CYP2C19 и CYP3A4 до диметилрабепразола и рабепразол сульфона соответственно.

    CYP2C19 участвует в метаболизме тамоксифена, фенитоина, тиклопидина, таких психотропных ЛС, как трициклические антидепрессанты, диазепам, некоторые барбитураты.

    Для CYP2C19 характерен генетический полиморфизм. Медленные метаболизаторы по CYP2Cl9 - носители «медленных» аллельных вариантов. Применение у медленных метаболизаторов по CYP2CL9 препаратов - субстратов этого изофермента приводит к более частому возникновению нежелательных лекарственных реакций, особенно при использовании препаратов с узкой терапевтической широтой: трициклических антидепрессантов, диазепама, некоторых барбитуратов (мефобарбитала, гексобарбитала). Однако наибольшее количество исследований посвящено влиянию полиморфизма гена CYP2C19 на фармакокинетику и фармакодинамику блокаторов ингибиторов протонного насоса. Как показали фармакокинетические исследования, проведённые при участии здоровых добровольцев, площадь под фармакокинетической кривой, значения максимальной концентрации омепразола, лансопразола и рабепразола достоверно выше у гетерозигот и, особенно, у гомозигот по «медленным» аллельным вариантам гена CYP2C19. Кроме того, более выраженное подавление желудочной секреции при применении омепразола, лансорпразола, рабепразола наблюдали у пациентов (гетерозиготы и гомозиготы по «медленным» аллельным вариантам CYP2C19), страдающих язвенной болезнью и рефлюкс-эзофагитом. Однако частота нежелательных лекарственных реакций ингибиторов протонного насоса не зависит от генотипа по CYP2C19. Существующие данные позволяют предположить, что для достижения «целевого» подавления желудочной секреции у гетерозигот и гомозигот по «медленным» аллельным вариантам гена CYP2C19 необходимы меньшие дозы ингибиторов протонного насоса.

    Подсемейство цитохрома Р-450 CYPIID

    В состав подсемейства цитохрома Р-450 CYPIID входит единственный изофермент - 2D6 (CYP2D6).

    Изофермент цитохрома Р-450 2D6 (CYP2D6) обнаруживают в основном в печени. CYP2D6 метаболизирует около 20% всех известных ЛС, в том числе нейролептики, антидепрессанты, транквилизаторы, β-адреноблокаторы. Доказано: CYP2D6 - главный фермент биотрансформации и трициклического антидепрессанта амитриптилина. Однако, как показали исследования, незначительная часть амитриптилина метаболизируется и другими изоферментами цитохрома Р-450 (CYP2C19, CYP2C9, CYP3A4) до неактивных метаболитов. Дебризохин р, декстрометорфан и спартеин - маркёрные субстраты, используемые для фенотипирования изофермента 2D6. CYP2D6, в отличие от других изоферментов цитохрома Р-450, не имеет индукторов.

    Ген CYP2D6 обладает полиморфизмом. Еще в 1977 году Iddle и Mahgoub обратили внимание на различие гипотензивного эффекта у больных артериальной гипертензией, применявших дебризохин р (препарат из группы α-адреноблокаторов). Тогда же сформулировали предположение о различии скорости метаболизма (гидроксилирования) дебризохина р у разных индивидуумов. У «медленных» метаболизаторов дебризохина р зарегистрировали наибольшую выраженность гипотензивного эффекта данного препарата. Позднее доказали, что у «медленных» метаболизаторов дебризохина р замедлен метаболизм и некоторых других ЛС, в том числе фенацетина, нортриптилина р, фенформина р, спартеина, энкаинида р, пропранолола, гуаноксана р и амитриптилина. Как показали дальнейшие исследования, «медленные» метаболизаторы по CYP2D6 - носители (как гомозиготы, так и гетерозиготы) функционально дефектных аллельных вариантов гена CYP2D6. Результат этих вариантов - отсутствие синтеза CYP2D6 (аллельный вариант CYP2D6x5), синтез неактивного белка (аллельные варианты CYP2D6x3, CYP2D6x4, CYP2D6x6, CYP2D6x7, CYP2D6x8, CYP2D6x11, CYP2D6x12, CYP2D6x14, CYP2D6x15, CYP2D6x19, CYP2D6x20), синтез дефектного белка со сниженной активностью (варианты CYP2D6x9, CYP2D6x10, CYP2D6x17,

    CYP2D6x18, CYP2D6x36). С каждым годом растёт количество найденных аллельных вариантов гена CYP2D6 (их носительство приводит к изменению активности CYP2D6). Однако ещё Saxena (1994) указывал, что 95% всех «медленных» метаболизаторов по CYP2D6 - носители вариантов CYP2D6x3, CYP2D6x4, CYP2D6x5, остальные варианты обнаруживают гораздо реже. По данным Rau и соавт. (2004), частота аллельного варианта CYP2D6x4 среди пациентов, у которых наблюдали нежелательные лекарственные реакции на фоне приёма трициклических антидепрессантов (артериальная гипотензия, седативный эффект, тремор, кардиотоксичность), почти в 3 раза (20%) превышает таковую у пациентов, при лечении которых указанными препаратами осложнений не регистрировали (7%). Аналогичное влияние генетического полиморфизма CYP2D6 обнаружили и на фармакокинетику и фармакодинамику нейролептиков, в результате продемонстрировали наличие ассоциаций между носительством некоторых аллельных вариантов гена CYP2D6 и развитием индуцированных нейролептиками экстрапирамидных нарушений.

    Однако носительство «медленных» аллельных вариантов гена CYP2D6 может сопровождаться не только увеличением риска развития нежелательных лекарственных реакций при применении препа-

    ратов, метаболизирующихся данным изоферментом. Если ЛС - пролекарство, а активный метаболит образуется именно под действием CYP2D6, то у носителей «медленных» аллельных вариантов отмечают низкую эффективность препарата. Так, у носителей «медленных» аллельных вариантов гена CYP2D6 регистрируют менее выраженный анальгезирующий эффект кодеина. Этот феномен объясняют снижением О-деметилирования кодеина (в ходе указанного процесса образуется морфин). Обезболивающее действие трамадола также обусловлено активным метаболитом О-деметилтрамадолом (образуется под действием CYP2D6). У носителей «медленных» аллелельных вариантов гена CYP2D6 отмечают значительное уменьшение синтеза О-деметилтрамадола; это может привести к недостаточному анальгезирующему эффекту (аналогично процессам, возникающим при использовании кодеина). Так, Stamer и соавт. (2003), изучив анальгезирующий эффект трамадола у 300 пациентов, перенёсших операции на брюшной полости, обнаружили, что гомозиготы по «медленным» аллельным вариантам гена CYP2D6 не «отвечали» на терапию трамадолом в 2 раза чаще, чем пациенты, не несущие данных аллелей (46,7% против 21,6% соответственно, р=0,005).

    В настоящее время выполнили множество исследований, посвя- щённых влиянию генетического полиморфизма CYP2D6 на фармакокинетику и фармакодинамику β-адреноблокаторов. Результаты этих исследований имеют клиническое значение для индивидуализации фармакотерапии данной группой ЛС.

    Подсемейство цитохрома Р-450 CYPIIB

    Из изоферментов подсемейства цитохрома IIE наиболее важную роль в метаболизме ЛС играет изофермент цитохрома Р-450 2Е1. Общее свойство изоферментов подсемейства CYPIIE - способность к индукции под влиянием этанола. Именно поэтому второе название подсемейства CYPIIE - этанол-индуцибельные цитохромы.

    Изофермент цитохрома Р-450 2Е1 (CYP2E1) содержится в печени взрослых. CYP2E1 составляет около 7% всех изоферментов цитохрома Р-450. Субстраты CYP2E1 - малое количество ЛС, а также некоторые другие ксенобиотики: этанол, нитрозоамины, «небольшие» ароматические углеводороды типа бензола и анилина, алифатические хлоруглеводороды. CYP2E1 катализирует превращение дапсона в гидроксиламиндапсон, n1-деметилирование и N7-деметилирование кофеина, дегалогенизацию хлорфторуглеводородов и средств для ингаляционного наркоза (галотан) и некоторые другие реакции.

    CYP2E1 вместе с CYP1A2 катализируют важную реакцию превращения парацетамола (ацетаминофена) в N-ацетилбензохинонимин, обладающий мощным гепатотоксическим действием. Существуют данные об участии цитохрома CYP2E1 ватерогенезе. Например, известно, что CYP2E1 - наиболее важный изофермент цитохрома Р-450, окисляющий холестерин липопротеидов низкой плотности (ЛНП). В процессе окисления ЛНП также принимают участие цитохромы и другие изоферменты цитохрома Р-450, а также 15-липооксигеназа и НАДФ-Н-оксидазы. Продукты окисления: 7а-гидроксихолестерол, 7β -гидроксихолестерол, 5β -6β -эпоксихолестерол, 5 α-6β -эпоксихолестерол, 7-кетохолестерол, 26-гидроксихолестерол. Процесс окисления ЛНП происходит в эндотелиоцитах, гладкой мускулатуре кровеносных сосудов, макрофагах. Окисленные ЛНП стимулируют формирование пенистых клеток и таким образом способствуют образованию атеросклеротических бляшек.

    Подсемейство цитохрома Р-450 CYPIIIA

    Подсемейство цитохрома Р-450 CYPIIIA включает четыре изофермента: 3А3, 3А4, 3А5 и 3А7. Цитохромы подсемейства IIIA составляют 30% всех изоферментов цитохрома Р-450 в печени и 70% всех изоферментов стенки пищеварительного тракта. При этом в печени преимущественно локализован изофермент 3А4 (CYP3A4), в стенках желудка и кишечника - изоферменты 3А3 (CYP3A3) и 3А5 (CYP3A5). Изофермент 3А7 (CYP3A7) обнаруживают только в печени плода. Из изоферментов подсемейства IIIA наиболее важную роль в метаболизме ЛС играет CYP3A4.

    Изофермент цитохрома Р-450 3А4 (CYP3A4) метаболизирует около 60% всех известных ЛС, в том числе блокаторы медленных кальциевых каналов, макролидные антибиотики, некоторые антиаритмики, статины (ловастатин, симвастатин, аторвастатин), клопидогрел 1 и другие препараты.

    CYP3A4 катализирует реакцию 6β-гидроксилирования эндогенных стероидов, в том числе тестостерона, прогестерона, кортизола p . Маркёрные субстраты для определения активности CYP3A4 - дапсон, эритромицин, нифедипин, лидокаин, тестостерон и кортизол p .

    Метаболизм лидокаина протекает в гепатоцитах, где через оксидативное N-деэтилирование CYP3A4 образуется моноэтилглицинксилидид (MEGX).

    1 Клопидогрел - пролекарство, под действием CYP3A4 он превращается в активный метаболит, обладающий антиагрегантным действием.

    Определение активности CYP3A4 по MEGX (метаболит лидокаина) - наиболее чувствительный и специфичный тест, позволяющий оценить функциональное состояние печени при острых и хронических её заболеваниях, а также при синдроме системного воспалительного ответа (сепсисе). При циррозе печени концентрация MEGX коррелирует с прогнозом заболевания.

    В литературе существуют данные о внутривидовой вариабельности метаболизма ЛС под действием CYP3A4. Однако молекулярные подтверждения генетического полиморфизма CYP3A4 появились только в последнее время. Так, A. Lemoin и соавт. (1996) описали случай интоксикации такролимусом (субстрат CYP3A4) у больного после пересадки печени (в клетках печени активность CYP3A4 обнаружить не удалось). Только после обработки клеток пересаженной печени глюкокортикоидами (индукторы CYP3A4) можно определить активность CYP3A4. Существует предположение, что нарушение экспрессии факторов транскрипции гена, кодирующего CYP3A4, - причина вариабельности метаболизма данного цитохрома.

    Изофермент цитохрома Р-450 3А5 (CYP3A5), по последним данным, может играть существенную роль в метаболизме некоторых лекарственных веществ. Следует отметить, что CYP3A5 экспрессируется в печени 10-30% взрослых людей. У этих индивидуумов вклад CYP3A5 в активность всех изоферментов подсемейства IIIA составляет от 33 (у европейцев) до 60% (у афроамериканцев). Как показали исследования, под влиянием CYP3A5 происходят процессы биотрансформации тех ЛС, которые традиционно рассматривают как субстраты CYP3A4. Следует отметить, что индукторы и ингибиторы CYP3A4 обладают аналогичным действием и в отношении CYP3A5. Активность CYP3A5 у различных индивидуумов варьирует более чем в 30 раз. Впервые различия активности CYP3A5 описали Paulussen и соавт. (2000): они наблюдали in vitro существенные различия скорости метаболизма мидазолама под влиянием CYP3A5.

    Дигидропиримидин дегидрогеназа

    Физиологическая функция дигидропиримидин дегидрогеназы (ДПДГ) - восстановление урацила и тимидина - первая реакция трёхэтапного метаболизма этих соединений до β-аланина. Кроме того, ДПДГ - основной фермент, метаболизирующий 5-фторура- цил. Указанный препарат применяют в составе комбинированной химиотерапии рака молочной железы, яичников, пищевода, желудка, толстой и прямой кишки, печени, шейки матки, вульвы. Также

    5-фторурацил используют при лечении рака мочевого пузыря, простаты, опухолей головы, шеи, слюнных желёз, надпочечников, поджелудочной железы. В настоящее время известна аминокислотная последовательность и количество аминокислотных остатков (их всего 1025), входящих в состав ДПДГ; молекулярная масса фермента составляет 111 кД. Идентифицировали ген ДПДГ, локализованный в хромосоме 1 (локус 1р22). Цитоплазма клеток различных тканей и органов содержит ДПДГ, особенно большое количество фермента обнаруживают в клетках печени, в моноцитах, лимфоцитах, гранулоцитах, тромбоцитах. Однако в эритроцитах активность ДПДГ не отмечена (Van Kuilenburg и соавт., 1999). С середины 80-х годов появились сообщения о серьёзных осложнениях, возникающих при применении 5-фторурацила (причина осложнений - наследственно обусловленная низкая активность ДПДГ). Как показали Diasio и соавт. (1988), низкая активность ДПДГ наследуется по аутосомнорецессивному типу. Таким образом, ДПДГ - фермент, обладающий генетическим полиморфизмом. В будущем, по-видимому, произой- дёт внедрение методов фенотипирования и генотипирования ДПДГ в онкологическую практику для обеспечения безопасности химиотерапии 5-фторурацилом.

    5.4. ФЕРМЕНТЫ II ФАЗЫ БИОТРАНСФОРМАЦИИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Глюкуронилтрансферазы

    Глюкуронирование - наиболее важная реакция II фазы метаболизма лекарственных веществ. Глюкуронирование представляет присоединение (конъюгацию) к субстрату уридиндифосфат-глюкуроновой кислоты (УДФ-глюкуроновой кислоты). Эта реакция катализируется надсемейством ферментов, называемых «УДФ-глюкуронилтрансферазы» и обозначаемых как UGT. Надсемейство УДФ-глюкуронилтрансфераз включает два семейства и более двадцати изоферментов, локализованных в эндоплазматической системе клеток. Они катализируют глюкуронирование большого количества ксенобиотиков, включая ЛС и их метаболиты, пестициды и канцерогены. К соединениям, подвергающимся глюкуронированию, относят простые и сложные эфиры; соединения, содержащие карбоксильные, карбомоильные, тиольные и карбонильные группы, а также нитрогруппы. Глюкуронирование

    приводит к увеличению полярности химических соединений, что облегчает их растворимость в воде и элиминацию. УДФ-глюкуронилтрансферазы обнаруживают у всех позвоночных животных: от рыб до человека. В организме новорождённых регистрируют низкую активность УДФ-глюкуронилтрансфераз, однако через 1-3 мес жизни активность данных ферментов можно сравнить с таковой у взрослых. УДФ-глюкуронилтрансферазы содержатся в печени, кишечнике, лёг- ких, головном мозге, обонятельном эпителии, почках, но печень - главный орган, в котором происходит глюкуронирование. Степень экспрессии различных изоферментов УДФ-глюкуронилтрансферазы в органах неодинакова. Так, изофермент УДФ-глюкуронилтрансферазы UGT1A1, катализирующий реакцию глюкуронирования билирубина, экспрессируется главным образом в печени, но не в почках. Изоферменты УДФ-глюкуронилтрансферазы UGT1A6 и UGT1A9, ответственные за глюкуронирование фенола, экспрессируются и в печени, и в почках одинаково. Как указывалось выше, по идентичности аминокислотного состава надсемейство УДФ-глюкуронилтрансфераз подразделяют на два семейства: UGT1 и UGT2. Изоферменты, семейства UGT1 сходны по аминокислотному составу на 62-80%, а изоферменты семейства UGT2 - на 57-93%. Изоферменты, входящие в состав семейств УДФ-глюкуронилтрансферазы человека, а также локализация генов и маркёрные субстраты изоферментов для фенотипирования представлены в таблице (табл. 5-7).

    Физиологическая функция УДФ-глюкуронилтрансфераз - глюкуронирование эндогенных соединений. Продукт катаболизма гема - билирубин - наиболее хорошо изученный эндогенный субстрат УДФ-глюкуронилтрансферазы. Глюкуронирование билирубина предотвращает накопление токсичного свободного билирубина. При этом билирубин выделяется с желчью в виде моноглюкуронидов и диглюкуронидов. Другая физиологическая функция УДФ-глюкуронилтрансферазы - участие в метаболизме гормонов. Так, тироксин и трийодтиронин подвергаются глюкуронированию в печени и выводятся в виде глюкуронидов с желчью. УДФ-глюкуронилтрансферазы также участвуют в метаболизме стероидных гормонов, желчных кислот, ретиноидов, однако эти реакции в настоящее время изучены недостаточно.

    Глюкуронированию подвергаются ЛС разных классов, многие из них имеют узкую терапевтическую широту, например, морфин и хлорамфеникол (табл. 5-8).

    Таблица 5-7. Состав семейств УДФ-глюкуронилтрансферазы человека, локализация генов и маркёрные субстраты изоферментов

    Таблица 5-8. Лекарственные средства, метаболиты и ксенобиотики, подвергающиеся глюкоуронированию различными изоферментами УДФ-глюкуронилтрансферазы

    Окончание таблицы 5-8

    Лекарственные средства (представители разных химических групп), подвергающиеся глюкуронированию

    Фенолы: пропофол, ацетаминофен, налоксон.

    Спирты: хлорамфеникол, кодеин, оксазепам.

    Алифатические амины: циклопироксоламин p , ламотриджин, амитриптилин.

    Карбоновые кислоты: ферпазон p , фенилбутазон, сульфинпиразон.

    Карбоксильные кислоты: напроксен, зомепирал p , кетопрофен. Таким образом, глюкуронированию подвергаются соединения,

    содержащие разные функциональные группы, выполняющие функции акцепторов для УДФ-глюкуроновой кислоты. Как указывалось выше, в результате глюкуронирования образуются полярные неактивные метаболиты, легко выводящиеся из организма. Однако существует пример, когда в результате глюкуронирования образуется активный метаболит. Глюкуронирование морфина приводит к образованию морфин-6-глюкуронида, обладающего значительным анальгезирующим эффектом и реже, чем морфин, вызывающего тошноту и рвоту. Также глюкуронирование может способствовать биологической активации канцерогенов. К канцерогенным глюкуронидам относят N-глюкуронид 4-аминобифенила, N-глюкуронид N-ацетил- бензидина,О-глюкуронид-4-((гидрокисметил)-нитрозоамино)-1-(3-пи- ридил)-1-бутанона.

    Давно известно о существовании наследственных нарушений глюкуронирования билирубина. К ним относят синдром Жильбера и синдром Криглера-Найяра. Синдром Жильбера - наследственное заболевание, наследуемое по аутосомно-рецессивному типу. Распространённость синдрома Жильбера среди населения составляет 1-5%. Причина развития данного заболевания - точечные мутации (как правило, замены в нуклеотидной последовательности) в гене UGT1. При этом образуется УДФ-глюкуронилтрансфераза, характеризующаяся малой активностью (25-30% от нормального уровня). Изменение глюкуронирования лекарственных веществ у больных с синдромом Жильбера изучено мало. Существуют данные о снижении клиренса толбутамида, парацетамола (ацетаминофена ♠) и рифампина p у больных с синдромом Жильбера. Изучали частоту побочных эффектов нового цитостатического препарата иринотекана у пациентов, страдающих одновременно колоректальным раком и синдромом Жильбера и у больных колоректальным раком. Иринотекан (СТР-11) - новый высокоэффективный препарат, обладающий цитостатическим действием, ингибирующий топоизомеразу I и применяемый при колоректальном раке при наличии резистентности к фторурацилу. Иринотекан в печени под действием карбоксиэстераз превращает-

    ся в активный метаболит 7-этил-10-гидроксикамптотекин (SN-38). Главный путь метаболизма SN-38 - глюкуронирование с помощью UGT1A1. В ходе исследований побочные эффекты иринотекана (в частности, диарею) достоверно чаще регистрировали у больных, имеющих синдром Жильбера. Учёные доказали: носительство аллельных вариантов UGT1A1x1B, UGT1A1x26, UGT1A1x60 ассоциируется с более частым развитием гипербилирубинемии при применении иринотекана, при этом регистрировали низкие значения площади под фармакокинетической кривой глюкуронида SN-38. В настоящее время Американским управлением по контролю над пищевыми продуктами и медикаментами (Food and drug administration - FDA) одобрено определение аллельных вариантов гена UGT1A1 для выбора режима дозирования иринотекана. Существуют данные о влиянии носительства аллельных вариантов генов, кодирующих и другие изоформы UGT, на фармакокинетику и фармакодинамику различных ЛС.

    Ацетилтрансферазы

    Ацетилирование эволюционно представляет один из самых ранних механизмов адаптации. Реакция ацетилирования необходима для синтеза жирных кислот, стероидов, функционирования цикла Кребса. Важная функция ацетилирования - метаболизм (биотрансформация) ксенобиотиков: ЛС, бытовых и промышленных ядов. На процессы ацетилирования влияет N-ацетилтрансфераза, а также кофермент А. Контроль интенсивности ацетилирования в организме человека происходит при участии β 2 -адренорецепторов и зависит от метаболических резервов (пантотеновой кислоты, пиридоксина, тиамина, липоевой кислоты *) и генотипа. Кроме того, интенсивность ацетилирования зависит от функционального состояния печени и других органов, содержащих N-ацетилтрансферазу (хотя ацетилирование, как и другие реакции II фазы, мало изменяется при заболеваниях печени). Между тем ацетилирование ЛС и других ксенобиотиков происходит преимущественно в печени. Выделено два изофермента N-ацетилтрансферазы: N-ацетилтрансфераза 1 (NAT1) и N-ацетилтрансфераза 2 (NAT2). NAT1 ацетилирует небольшое количество ариламинов и не обладает генетическим полиморфизмом. Таким образом, основной фермент ацетилирования - NAT2 . Ген NAT2 расположен в хромосоме 8 (локусы 8р23.1, 8р23.2 и 8р23.3). NAT2 ацетилирует различные ЛС, в том числе изониазид и сульфаниламиды (табл. 5-9).

    Таблица 5-9. Лекарственные средства, подвергающиеся ацетилированию

    Наиболее важным свойством NAT2 считают генетический полиморфизм. Впервые полиморфизм ацетилирования описал в 1960-е годы Evans; он выделил медленные и быстрые ацетиляторы изониазида. Также отметили, что у «медленных» ацетиляторов, в связи с накоплением (кумуляцией) изониазида, чаще возникают полиневриты. Так, у «медленных» ацетиляторов период полувыведения изониазида составляет 3 ч, в то время как у «быстрых» ацетиляторов - 1,5 ч. Развитие полиневритов обусловлено влиянием изониазида: препарат тормозит переход пиридоксина (витамина В 6) в активный кофермент дипиридоксинфосфат, необходимый для синтеза миелина. Предполагали, что у «быстрых» ацетиляторов применение изониазида с большей вероятностью приведёт к развитию гепатотоксического эффекта из-за более интенсивного образования ацетилгидразина, однако практического подтверждения это предположение не получило. Индивидуальная скорость ацетилирования существенно не влияет на режим дозирования препарата при ежедневном приёме, но может уменьшать эффективность терапии при периодическом использовании изониазида. Проанализировав результаты лечения изониазидом 744 больных туберкулёзом, выяснили, что у «медленных» ацетиляторов закрытие полостей в лёгких происходит быстрее. Как показало исследование, проведённое Sunahara в 1963 году, «медленные» ацетиляторы - гомозиготы по «медленной» аллели NAT2, а «быстрые» метаболизаторы - гомозиготы либо гетерозиготы по «быстрой» аллели NAT2. В 1964 году Evans опубликовал данные о том, что полиморфизм ацетилирования характерен не только для изониазида, но и для гидралазина и сульфаниламидов. Затем наличие полиморфизма ацетили-

    рования доказали и для других лекарственных средств. Применение прокаинамида и гидралазина у «медленных» ацетиляторов гораздо чаще вызывает поражение печени (гепатотоксичность), таким образом, и для этих препаратов характерен полиморфизм ацетилирования. Однако в случае с дапсоном (также подвергается ацетилированию) не удалось обнаружить различий в частоте возникновения волчаночноподобного синдрома при применении данного препарата «медленными» и «быстрыми» ацетиляторами. Распространённость «медленных» ацетиляторов варьирует: от 10-15% среди японцев и китайцев до 50% среди представителей европеоидной расы. Только в конце 80-х годов начали идентифицировать аллельные варианты гена NAT2, носительство которых обусловливает медленное ацетилирование. В настоящее время известно около 20 мутантных аллелей гена NAT2. Все указанные аллельные варианты наследуются по аутосомно-рецессивному типу.

    Тип ацетилирования определяют, используя методы фенотипирования и генотипирования NAT2. В качестве маркёрных субстратов ацетилирования используют дапсон, изониазид и сульфадимин (сульфадимезин *). Отношение концентрации моноацетилдапсона к концентрации дапсона менее 0,35 в плазме крови через 6 ч после введения препарата характерно для «медленных» ацетиляторов, а более 0,35 - для «быстрых» ацетиляторов. Если в качестве маркерного субстрата используют сульфадимин, то наличие менее 25% сульфадимина в плазме крови (анализ выполняют через 6 ч) и менее 70% в моче (собранной через 5-6 ч после введения препарата) свидетельствует о фенотипе «медленного» ацетилирования.

    Тиопурин S-метилтрансфераза

    Тиопурин S-метилтрансфераза (ТРМТ) - фермент, катализирующий реакцию S-метилирования производных тиопурина - основной путь метаболизма цитостатических веществ из группы антагонистов пурина: 6-меркаптопурина, 6-тиогуанина, азатиоприна. 6-мер- каптопурин используют в составе комбинированной химиотерапии миелобластного и лимфобластного лейкоза, хронического миелолейкоза, лимфосаркомы, саркомы мягких тканей. При острых лейкозах применяют, как правило, 6-тиогуанин. В настоящее время известна аминокислотная последовательность и количество аминокислотных остатков, входящих в состав ТРМТ, - 245. Молекулярная масса ТРМТ составляет 28 кДа. Также идентифицировали ген ТРМТ, локализованный в хромосоме 6 (локус 6q22.3). ТРМТ располагается в цитоплазме кроветворных клеток.

    В 1980 году Weinshiboum изучал активность ТРМТ у 298 здоровых добровольцев и обнаружил значительные различия активности ТРМТ у людей: 88,6% обследованных имели высокую активность ТРМТ, 11,1% - промежуточную. Низкую активность ТРМТ (или полное отсутствие активности фермента) зарегистрировали у 0,3% обследованных добровольцев. Так впервые описали генетический полиморфизм ТРМТ. Как показали более поздние исследования, для людей с низкой активностью ТРМТ характерна повышенная чувствительность к 6-меркаптопурину, 6-тиогуанину и азатиоприну; при этом развиваются опасные для жизни гематотоксические (лейкопения, тромбоцитопения, анемия) и гепатотоксические осложнения. В условиях низкой активности ТРМТ, метаболизм 6-меркаптопурина идёт по альтернативному пути - до высокотоксичного соединения 6-тио- гуанина нуклеотида. Lennard и соавт. (1990) изучали концентрацию 6-тиогуанина нуклеотида в плазме крови и активность ТРМТ в эритроцитах 95 детей, получавших 6-меркаптопурин по поводу острого лимфобластного лейкоза. Авторы выяснили: чем меньше активность ТРМТ, тем выше концентрации 6-TGN в плазме крови и тем более выражены побочные эффекты 6-меркаптопурина. В настоящее время доказано, что низкая активность ТРМТ наследуется по аутосомнорецессивному типу, причём у гомозигот регистрируют низкую активность ТРМТ, а у гетерозигот - промежуточную. Генетические исследования последних лет, выполненные методом полимеразной цепной реакции, позволили обнаружить мутации гена ТРМТ, определяющие низкую активность данного фермента. Безопасные дозы 6-меркапто- пурина: при высокой активности ТРМТ (нормальный генотип) назначают по 500 мг/(м 2 ×сутки), при промежуточной активности ТРМТ (гетерозиготы) - по 400 мг/(м 2 ×сутки), при медленной активности ТРМТ (гомозиготы) - по 50 мг/(м 2 ×сутки).

    Сульфотрансферазы

    Сульфатирование - реакция присоединения (конъюгации) к субстрату остатка серной кислоты, при этом образуются сложные эфиры серной кислоты или сульфоматы. Сульфатированию в организме человека подвергаются экзогенные соединения (в основном фенолы) и эндогенные соединения (гормоны щитовидной железы, катехоламины, некоторые стероидные гормоны). В качестве кофермента реакции сульфатирования выступает 3"-фосфоаденилсульфат. Затем происходит превращение 3"-фосфоаденилсульфата в аденозин- 3",5"-бифосфонат. Реакция сульфатирования катализируется над-

    семейством ферментов, называемых «сульфотрансферазы» (SULT). Сульфотрансферазы локализуются в цитозоле. В организме человека обнаружили три семейства. В настоящее время идентифицировали около 40 изоферментов сульфотрансферазы. Изоферменты сульфотрансферазы в организме человека кодируются, по крайней мере, 10 генами. Наибольшая роль в сульфатировании лекарственных веществ и их метаболитов принадлежит изоферментам сульфотрансферазы семейства 1 (SULT1). SULT1A1 и SULT1A3 - самые важные изоферменты данного семейства. Изоферменты SULT1 локализованы главным образом в печени, а также толстой и тонкой кишке, лёгких, головном мозге, селезёнке, плаценте, лейкоцитах. Изоферменты SULT1 имеют молекулярную массу около 34 кДа и состоят из 295 аминокислотных остатков, ген изоферментов SULT1 локализован в 16 хромосоме (локус 16р11.2). SULT1A1 (термостабильная сульфотрансфераза) катализирует сульфатирование «простых фенолов», в том числе лекарственных веществ фенольной структуры (миноксидил р, ацетаминофен, морфин, салициламид, изопреналин и некоторые другие). Следует отметить, что сульфатирование миноксидила р приводит к образованию его активного метаболита - миноксидила сульфата. SULT1A1 сульфатирует метаболиты лидокаина: 4-гидрокси-2,6-ксилидин(4-гидроксил) и ропивакаина: 3-гид- роксиропивакаин, 4-гидроксиропивакаин, 2-гидроксиметилропива- каин. Кроме того, SULT1A1 сульфатирует 17β-эстрадиол. Маркёрный субстрат SULT1A1 - 4-нитрофенол. SULT1A3 (термолабильная сульфотрансфераза) катализирует реакции сульфатирования фенольных моноаминов: дофамина, норадреналина, серотонина. Маркёрный субстрат SULT1A3 - дофамин. Изоферменты сульфотрансферазы семейства 2 (SULT2) обеспечивают сульфатирование дигидроэпиандростерона, эпиандростерона, андростерона. Изоферменты SULT2 участвуют в биологической активации канцерогенов, например, ПАУ (5-гидроксиметилхризен, 7,12-дигидроксиметилбенз[а]антрацен), N-гидрокси-2-ацетиламинофлуорен. Изоферменты сульфотрансферазы семейства 3 (SULT3) катализируют N-сульфатирование ациклических ариламинов.

    Эпоксидгидролаза

    Водная конъюгация играет важную роль в детоксикации и биологической активации большого количества ксенобиотиков, таких, как арены, алифатические эпоксиды, ПАУ, афлотоксин В1. Реакции водной конъюгации катализирует особый фермент - эпоксидгидролаза

    (ЕРНХ). Наибольшее количество данного фермента обнаружено в печени. Учёные выделили две изоформы эпоксидгидролазы: ЕРНХ1 и ЕРНХ2. ЕРНХ2 состоит из 534 аминокислотных остатков, имеет молекулярную массу 62 кДа; ген ЕРНХ2 располагается в хромосоме 8 (локус 8р21-р12). ЕРНХ2 локализуется в цитоплазме и пероксисомах; данная изоформа эпоксидгидролазы играет небольшую роль в метаболизме ксенобиотиков. Большую часть реакций водной конъюгации катализирует ЕРНХ1. ЕРНХ1 состоит из 455 аминокислотных остатков, имеет молекулярную массу 52 кДа. Ген ЕРНХ1 располагается в хромосоме 1 (локус 1q42.1). Велико значение ЕРНХ1 в водной конъюгации токсических метаболитов лекарственных веществ. Противосудорожное средство фенитоин окисляется цитохромом Р-450 до двух метаболитов: парагидроксилатеда и дигидродиола. Указанные метаболиты - активные электрофильные соединения, способные ковалентно связываться с макромолекулами клеток; это приводит к гибели клетки, формированию мутаций, озлокачествлению, дефектам митоза. Кроме того, парагидроксилатед и дигидродиол, действуя как гаптены, могут вызывать и иммунологические реакции. Гиперплазия дёсен, а также тератогенные эффекты - токсические реакции фенитоина зарегистрированы у животных. Доказано, что эти эффекты обусловлены действием метаболитов фенитоина: парагидроксилатеда и дигидродиола. Как показали Buecher и соавт. (1990), низкая активность ЕРНХ1 (меньше 30% от нормы) в амниоцитах - серьёзный фактор риска развития врождённых аномалий плода у женщин, принимающих во время беременности фенитоин. Доказано также, что основная причина снижения активности ЕРНХ1 - точечная мутация в экзоне 3 гена ЕРНХ1; в результате синтезируется дефектный фермент (тирозин в 113 положении заменён на гистидин). Мутация наследуется по аутосомнорецессивному типу. Снижение активности ЕРНХ1 наблюдают только у гомозигот по этой мутантной аллели. Данные о распространённости гомозигот и гетерозигот по этой мутации отсутствуют.

    Глутатионтрансферазы

    Конъюгации с глутатионом подвергаются ксенобиотики с различной химической структурой: эпоксиды, ареноксиды, гидроксиламины (некоторые из них обладают канцерогенным действием). Среди лекарственных веществ конъюгации с глутатионом подвергаются этакриновая кислота (урегит ♠) и гепатотоксичный метаболит парацетамола (ацетаминофена ♠) - N-ацетилбензохинонимин, превраща-

    ющийся при этом в нетоксичное соединение. В результате реакции конъюгации с глутатионом образуются цистеиновые конъюгаты, называемые «тиоэстеры». Конъюгацию с глутатионом катализируют ферменты глутатион SH-S-трансферазы (GST). Эта группа ферментов локализована в цитозоле, хотя описана и микросомальная GST (однако её роль в метаболизме ксенобиотиков изучена мало). Активность GST в эритроцитах человека у различных индивидуумов различается в 6 раз, однако зависимость активности фермента от пола при этом отсутствует). Тем не менее, как показали исследования, существует чёткая корреляция активности GST у детей и их родителей. По идентичности аминокислотного состава у млекопитающих выделяют 6 классов GST: α- (альфа-), μ- (мю-), κ- (каппа-), θ- (тета-), π- (пи-) и σ- (сигма-) GST. В организме человека в основном экспрессируются GST классов μ (GSTM), θ (GSTT и π (GSTР). Среди них наибольшее значение в метаболизме ксенобиотиков имеют GST класса μ, обозначаемые как GSTM. В настоящее время выделено 5 изоферментов GSTM: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5. Ген GSTM локализован в хромосоме 1 (локус 1р13.3). GSTM1 экспрессируется в печени, почках, надпочечниках, желудке; слабая экспрессия данного изофермента найдена в скелетных мышцах, миокарде. GSTM1 не экспрессируется в плодной печени, фибробластах, эритроцитах, лимфоцитах и тромбоцитах. GSTM2 («мышечная» GSTM) экспрессируется во всех вышеперечисленных тканях (особенно в мышечной), кроме фибробластов, эритроцитов, лимфоцитов, тромбоцитов и фетальной печени. Экспрессия GSTM3 («мозговая» GSTM) осуществляется во всех тканях организма, особенно в ЦНС. Важная роль в инактивации канцерогенов принадлежит GSTM1. Косвенным подтверждением этого считают достоверное увеличение частоты злокачественных заболеваний среди носителей нулевых аллелей гена GSTM1, у которых отсутствует экспрессия GSTM1. Harada и соавт. (1987), изучив образцы печени, изъятые у 168 трупов, обнаружили, что нулевая аллель гена GSTM1 достоверно чаще встречается у больных с гепатокарциномой. Board и соавт. (1987) впервые выдвинули гипотезу: в организме носителей нулевых аллелей GSTM1 не происходит инактивация некоторых электрофильных канцерогенов. По данным Board и соавт. (1990), распро- странённость нулевой аллели GSTM1 среди европейского населения составляет 40-45%, в то время как у представителей негроидной расы - 60%. Существуют данные о более высокой частоте рака лёгких у носителей нулевой аллели GSTM1. Как показали Zhong и соавт. (1993),

    70% больных раком ободочной кишки - носители нулевой аллели GSTM1. Другой изофермент GST, принадлежащий к классу π, - GSTР1 (локализуется главным образом в печени и структурах гематоэнцефалического барьера) участвует в инактивации пестицидов и гербицидов, широко используемых в сельском хозяйстве.

    5.5. ФАКТОРЫ, ВЛИЯЮЩИЕ НА БИОТРАНСФОРМАЦИЮ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    Генетические факторы, влияющие на систему биотрансформации и транспортёры лекарственных средств

    Генетические факторы, представляющие однонуклеотидные полиморфизмы генов, кодирующих ферменты биотрансформации и транс- портёры ЛС, могут в значительной степени влиять на фармакокинетику ЛС. Межиндивидуальные различия в скорости метаболизма ЛС, которые можно оценить по отношению концентрации ЛС-субстрата к концентрации его метаболита в плазме крови или в моче (метаболическое отношение), позволяют выделить группы индивидуумов, различающиеся по активности того или иного изофермента метаболизма.

    «Экстенсивные» метаболизаторы (extensive metabolism, ЕМ) - лица с «нормальной» скоростью метаболизма определённых ЛС, как правило, гомозиготы по «дикой» аллели гена соответствующего фермента. К группе «экстенсивных» метаболизаторов принадлежит большинство населения.

    «Медленные» метаболизаторы (poor metabolism, РМ) - лица со сниженной скоростью метаболизма определённых ЛС, как правило, гомозиготы (при аутосомно-рецессивном типе наследования) или гетерозиготы (при аутосомно-доминантном типе наследования) по «медленной» аллели гена соответствующего фермента. У этих индивидуумов происходит синтез «дефектного» фермента, либо вообще отсутствует синтез фермента метаболизма. В результате происходит снижение ферментативной активности. Нередко обнаруживают полное отсутствие ферментативной активности. У этой категории лиц регистрируют высокие показатели отношения концентрации ЛС к концентрации его метаболита. Следовательно, у «медленных» метаболизаторов ЛС накапливается в организме в высоких концентрациях; это приводит к разви-

    Тию выраженных нежелательных лекарственных реакций, вплоть до интоксикации. Именно поэтому таким пациентам (медленным метаболизаторам) необходимо выполнять тщательный подбор дозы ЛС. «Медленным» метаболизаторам назначают меньшие дозы ЛС, чем «активным». «Сверхактивные», или «быстрые» метаболизаторы (ultraextensive metabolism, UM) - лица с повышенной скоростью метаболизма определённых ЛС, как правило, гомозиготы (при аутосомнорецессивном типе наследования) или гетерозиготы (при аутосомно-доминантном типе наследования) по «быстрой» аллели гена соответствующего фермента или, что наблюдают чаще, несущие копии функциональных аллелей. У этой категории лиц регистрируют низкие значения отношения концентрации ЛС к концентрации его метаболита. В результате концентрация ЛС в плазме крови недостаточна для достижения терапевтического эффекта. Таким пациентам («сверхактивным» метаболизаторам) назначают более высокие дозы ЛС, чем «активным» метаболизаторам. Если присутствует генетический полиморфизм того или иного фермента биотрансформации, то распределение индивидуумов по скорости метаболизма ЛС-субстратов данного фермента приобретает бимодальный (если существует 2 типа метаболизаторов) или тримодальный (если существует 3 типа метаболизаторов) характер.

    Полиморфизм характерен и для генов, кодирующих транспортёры ЛС, при этом фармакокинетика ЛС может изменяться в зависимости от функции данного транспортёра. Клиническое значение наиболее значимых ферментов биотрансформации и транспортёров рассмотрено ниже.

    Индукция и ингибирование системы биотрансформации и транспортёров

    Под индукцией фермента биотрансформации или транспортёра понимают абсолютное увеличение его количества и (или) активности вследствие воздействия определённого химического агента, в частности, ЛС. В случае с ферментами биотрансформации это сопровождается гипертрофией ЭПР. Индукции могут подвергаться как ферменты I фазы (изоферменты цитохрома Р-450) и II фазы биотрансформации (УДФ-глюкуронилтрансфераза и др.), так и транспортёры ЛС (гликопротеин-Р, транспортёры органических анионов и катионов). ЛС, индуцирующие ферменты биотрансформации и транспортёры, не обладают очевидным структурным сходством, однако для них харак-

    терны некоторые общие признаки. Такие вещества растворимы в жирах (липофильны); служат субстратами ферментов (которые они индуцируют) и имеют, чаще всего, длительный период полувыведения. Индукция ферментов биотрансформации ведёт к ускорению биотрансформации и, как правило, к снижению фармакологической активности, а следовательно, и к эффективности совместно применяемых с индуктором ЛС. Индукция транспортёров ЛС может приводить к различным изменениям концентрации ЛС в плазме крови, в зависимости от функций данного транспортёра. Различные субстраты способны индуцировать ферменты биотрансформации ЛС и транспортёры ЛС с неодинаковыми молекулярной массой, субстратной специфичностью, иммунохимическими и спектральными характеристиками. Кроме того, существуют значительные межиндивидуальные различия в интенсивности индукции ферментов биотрансформации и транспортёров ЛС. Один и тот же индуктор может повышать активность фермента или транспортёра у различных индивидуумов в 15-100 раз.

    Основные типы индукции

    «Фенобарбиталовый» тип индукции - непосредственное воздействие молекулы-индуктора на регуляторную область гена; это приводит к индукции фермента биотрансформации или транс- портёра ЛС. Такой механизм наиболее характерен для аутоиндукции. Под аутоиндукцией понимают увеличение активности фермента, метаболизирующего ксенобиотик, под действием самого ксенобиотика. Аутоиндукцию рассматривают как адаптивный механизм, выработанный в процессе эволюции для инактивации ксенобиотиков, в том числе растительного происхождения. Так, аутоиндукцией по отношению к цитохромам подсемейства IIВ обладает фитонцид чеснока - диалил сульфид. Барбитураты (индукторы изоферментов цитохрома Р-450 3А4, 2С9, подсемейства IIВ) - типичные аутоиндукторы (среди лекарственных веществ). Именно поэтому данный тип индукции получил название «фенобарбиталовый».

    «Рифампицин-дексаметазоновый» тип - индукция изоферментов цитохрома Р-450 1А1, 3А4, 2В6 и гликопротеина-Р опосредована взаимодействием молекулы индуктора со специфическими рецепторами, их относят к классу белков-регуляторов транскрипции: прегнан-Х-рецептор (PXR), Ah-рецептор, CAR-рецеп- тор. Соединяясь с этими рецепторами, ЛС-индукторы образуют комплекс, который, проникая в ядро клетки, воздействует на

    Регуляторную область гена. В результате происходит индукция фермента биотрансформации ЛС, или транспортёра. По этому механизму рифампины, глюкокортикоиды, препараты зверобоя и некоторые другие вещества индуцируют изоферменты цитохрома Р-450 и гликопротеин-Р. «Этаноловый» тип - стабилизация молекулы фермента биотрансформации ЛС вследствие образования комплекса с некоторыми ксенобиотиками (этанол, ацетон). Например, этанол индуцирует изофермент 2Е1 цитохрома Р-450 на всех этапах его образования: от транскрипции до трансляции. Полагают, что стабилизирующий эффект этанола связан с его способностью активировать систему фосфорилирования в гепатоцитах через ЦАМФ. По данному механизму изониазид индуцирует изофермент 2Е1 цитохрома Р-450. С «этаноловым» механизмом связывают процесс индукции изофермента 2Е1 цитохрома Р-450 при голодании и сахарном диабете, в данном случае в качестве индукторов изофермента 2Е1 цитохрома Р-450 выступают кетоновые тела. Индукция ведёт к ускорению биотрансформации ЛС-субстратов соответствующих ферментов, и, как правило, к снижению их фармакологической активности. Среди индукторов наиболее часто применяют в клинической практике рифампицин (индуктор изоферментов 1А2, 2С9, 2С19, 3A4, 3А5, 3А6, 3А7 цитохрома Р-450; гликопротеин-Р) и барбитураты (индукторы изоферментов 1A2, 2В6, 2C8, 2С9, 2С19, 3A4, 3А5, 3А6, 3А7 цитохрома Р-450). Для развития индуцирующего эффекта барбитуратов требуется несколько недель. В отличие от барбитуратов, рифампицин, как индуктор, действует быстро. Эффект рифампицина можно обнаружить уже через 2-4 дня. Максимальный эффект препарата регистрируют через 6-10 дней. Индукция ферментов, или транспортёров ЛС, вызванная рифампицином и барбитуратами, иногда приводит к снижению фармакологической эффективности непрямых антикоагулянтов (варфарина, аценокумарола), циклоспорина, глюкокортикоидов, кетоконазола, теофиллина, хинидина, дигоксина, фексофенадина и верапамила (это требует коррекции режима дозирования данных ЛС т.е. увеличения дозы). Следует подчеркнуть, что при отмене индуктора ферментов биотрансформации ЛС дозу сочетаемого ЛС следует снижать, так как происходит увеличение его концентрации в плазме крови. Примером такого взаимодействия можно считать комбинацию антикоагулянтов непрямого действия и фенобарбитала. Как показали исследования, в 14% случаев кровотечения при лечении

    непрямыми антикоагулянтами развиваются вследствие отмены ЛС, индуцирующих ферменты биотрансформации.

    Некоторые соединения могут ингибировать активность ферментов биотрансформации и транспортёров ЛС. Причём при снижении активности ферментов, метаболизирующих ЛС, возможно развитие побочных эффектов, связанных с длительной циркуляцией этих соединений в организме. Ингибирование транспортёров ЛС может приводить к различным изменениям концентрации ЛС в плазме крови в зависимости от функций данного транспортёра. Некоторые лекарственные вещества способны ингибировать как ферменты I фазы биотрансформации (изоферменты цитохрома Р-450) и II фазы биотрансформации (N-ацетилтрансфераза и др.), так и транспортёры ЛС.

    Основные механизмы ингибирования

    Связывание с регуляторной областью гена фермента биотрансформации или транспортёра ЛС. По данному механизму происходит ингибирование ферментов биотрансформации ЛС под действием большого количества препарата (циметидин, флуоксетин, омепразол, фторхинолоны, макролиды, сульфаниламиды и т.д.).

    Некоторые препараты, обладающие высоким аффинитетом (сродством) к определённым изоферферментам цитохрома Р-450 (верапамил, нифедипин, исрадипин, хинидин), ингибируют биотрансформацию ЛС с более низким аффинитетом к этим изоферментам. Подобный механизм называют конкурентным метаболическим взаимодействием.

    Прямая инактивация изоферментов цитохрома Р-450 (гастоден р). Угнетение взаимодействия цитохрома Р-450 с НАДФ-Н-цитохром Р-450 редуктазой (фумарокумарины сока грейпфрута и лайма).

    Снижение активности ферментов биотрансформации ЛС под действием соответствующих ингибиторов ведёт к повышению концентрации в плазме крови этих ЛС (субстратов для ферментов). При этом происходит удлинение периода полувыведения лекарственных веществ. Всё это служит причиной развития побочных эффектов. Некоторые ингибиторы влияют на несколько изоферментов биотрансформации одновременно. Для угнетения нескольких изоформ ферментов могут потребоваться большие концентрации ингибитора. Так, флуконазол (противогрибковый препарат) в дозе 100 мг в сутки угнетает активность изофермента 2С9 цитохрома Р-450. При повышении дозы данного ЛС до 400 мг отмечают также угнетение

    активности изофермента 3А4. Кроме того, чем выше доза ингибитора, тем быстрее развивается (и тем выше) его эффект. Ингибирование вообще развивается быстрее, чем индукция, обычно его можно зарегистрировать уже через 24 ч с момента назначения ингибиторов. На скорость ингибирования активности фермента влияет также путь введения ЛС-ингибитора: если ингибитор вводят внутривенно, то процесс взаимодействия произойдёт быстрее.

    Ингибиторами и индукторами ферментов биотрансформации и транспортёров ЛС могут служить не только ЛС, но и фруктовые соки (табл. 5-10), и фитопрепараты (приложение 2) - всё это имеет клиническое значение при применении ЛС, выполняющих функции субстратов для данных ферментов и транспортёров.

    Таблица 5-10. Влияние фруктовых соков на активность системы биотрансформации и транспортёров лекарственных средств

    5.6. ЭКСТРАГЕПАТИЧЕСКАЯ БИОТРАНСФОРМАЦИЯ

    Роль кишечника в биотрансформации лекарственных средств

    Кишечник считают вторым по значимости органом (после печени), выполняющим биотрансформацию ЛС. В стенке кишечника осуществляются как реакции I фазы, так и реакции II фазы биотрансформации. Биотрансформация ЛС в стенке кишечника имеет большое значение в эффекте первого прохождения (пресистемной биотрансформации). Уже доказана существенная роль биотрансформации в стенке кишечника в эффекте первого прохождения таких ЛС, как циклоспорин А, нифедипин, мидазолам, верапамил.

    Ферменты I фазы биотрансформации лекарственных средств в стенке кишечника

    Среди ферментов I фазы биотрансформации ЛС, в стенке кишечника в основном локализованы изоферменты цитохрома Р-450. Среднее содержание изоферментов цитохрома Р-450 в стенке кишечника человека составляет 20 пмоль/мг микросомального белка (в печени - 300 пмоль/мг микросомального белка). Установлена чёткая закономерность: содержание изоферментов цитохрома Р-450 уменьшается от проксимальных отделов кишечника к дистальным (табл. 5-11). Кроме того, содержание изоферментов цитохрома Р-450 максимально на вершине ворсинок кишечника и минимально - в криптах. Преобладающийвкишечникеизоферментцитохрома Р-450 - CYP3А4 составляет 70% от всех изоферментов цитохрома Р-450 кишечника. По данным разных авторов, содержание CYP3А4 в стенке кишечника варьирует, что объясняют межиндивидульными различиями цитохрома Р-450. Также имеют значение и способы очистки энтероцитов.

    Таблица 5-11. Содержание изофермента 3А4 цитохрома Р-450 в стенке кишечника и печени человека

    В стенке кишечника идентифицированы также другие изоферменты: CYP2C9 и CYP2D6. Однако, по сравнению с печенью, содержание указанных ферментов в стенке кишечника незначительно (в 100-200 раз меньше). Проведённые исследования продемонстрировали незначительную, по сравнению с печенью, метаболическую активность изоферментов цитохрома Р-450 стенки кишечника (табл. 5-12). Как показали исследования, посвященные изучению индукции изоферментов цитохрома Р-450 стенки кишечника, индуцибельность изоферментов стенки кишечника ниже, чем у изоферментов цитохрома Р-450 печени.

    Таблица 5-12. Метаболическая активность изоферментов цитохромов Р-450 стенки кишечника и печени

    Ферменты II фазы биотрансформации лекарственных средств в стенке кишечника

    УДФ-глюкуронилтрансфераза и сульфотрансфераза - наиболее хорошо изученные ферменты II фазы биотрансформации ЛС, расположенные в стенке кишечника. Распределение этих ферментов в кишечнике аналогично изоферментам цитохрома Р-450. Cappiello и соавт. (1991) изучали активность УДФ-глюкуронилтрансферазы в стенке кишечника и печени человека по метаболическому клиренсу 1-нафтола, морфина и этинилэстрадиола (табл. 5-13). Как показали исследования, метаболическая активность УДФ-глюкуронилтрансферазы стенки кишечника ниже УДФ-глюкуронилтрансферазы печени. Подобная закономерность характерна и для глюкуронирования билирубина.

    Таблица 5-13. Метаболическая активность УДФ-глюкуронилтрансферазы в стенке кишечника и в печени

    Cappiello и соавт. (1987) изучали также активность сульфотрансферазы стенки кишечника и печени по метаболическому клиренсу 2-нафтола. Полученные данные свидетельствуют о наличии различий показателей метаболического клиренса (причём клиренс 2-нафтола в стенке кишечника ниже, чем в печени). В подвздошной кишке величина данного показателя составляет 0,64 нмоль/(минхмг), в сигмовидной кишке - 0,4 нмоль/(минхмг), в печени - 1,82 нмоль/(минхмг). Однако существуют препараты, сульфатирование которых происходит в основном в стенке кишечника. К ним относят, например, β 2 -адреномиметики: тербуталин и изопреналин (табл. 5-14).

    Таким образом, несмотря на определённый вклад в биотрансформацию лекарственных веществ, стенка кишечника по своей метаболической способности значительно уступает печени.

    Таблица 5-14. Метаболический клиренс тербуталина и изопреналина в стенке кишечника и печени

    Роль лёгких в биотрансформации лекарственных средств

    В лёгких человека присутствуют как ферменты I фазы биотрансформации (изоферменты цитохрома Р-450), так и ферменты II фазы

    (эпоксидгидролаза, УДФ-глюкуронилтрансфераза и др.). В лёгочной ткани человека удалось идентифицировать различные изоферменты цитохрома Р-450: CYP1A1, CYP1B1, CYP2А, CYP2A10, CYP2A11, CYP2В, CYP2E1, CYP2F1, CYP2F3. Общее содержание цитохрома Р-450 в лёгких человека составляет 0,01 нмоль/мг микросомального белка (это в 10 раз меньше, чем в печени). Существуют изоферменты цитохрома Р-450, которые экспрессируются преимущественно в лёг- ких. К ним относят CYP1A1 (найден у человека), CYP2В (у мыши), CYP4В1 (у крысы) и CYP4В2 (у крупного рогатого скота). Эти изоферменты имеют большое значение в биологической активации ряда канцерогенов и пульмонотоксичных соединений. Информация об участии CYP1A1 в биологической активации ПАУ изложена выше. У мышей окисление бутилированного гидрокситолуена изоферментом CYP2В приводит к образованию пневмотоксичного электрофильного метаболита. Изоферменты CYP4В1 крыс и CYP4В2 крупного рогатого скота способствуют биологической активации 4-ипоменола (4-ипоме- нол - сильнодействующий пневмотоксичный фуранотерпеноид грибка сырого картофеля). Именно 4-импоменол стал причиной массового падежа крупного рогатого скота в 70-е годы в США и Англии. При этом 4-ипоменол, окисленный изоферментом CYP4В2, вызывал интерстициальную пневмонию, приводившую к летальному исходу.

    Таким образом, экспрессия в лёгких специфичных изоферментов объясняет избирательную пульмонотоксичность некоторых ксенобиотиков. Несмотря на наличие в лёгких и других отделах дыхательных путей ферментов, их роль в биотрансформации лекарственных веществ ничтожна. В таблице приведены ферменты биотрансформации ЛС, обнаруженные в дыхательных путях человека (табл. 5-15). Определение локализации ферментов биотрансформации в дыхательных путях затруднено из-за использования в исследованиях гомогенизата лёгких.

    Таблица 5-15. Ферменты биотрансформации, обнаруженные в дыхательных путях человека

    Роль почек в биотрансформации лекарственных средств

    Исследования, выполненные в течение последних 20 лет, показали, что почки принимают участие в метаболизме ксенобиотиков и лекарственных веществ. При этом, как правило, происходит снижение биологической и фармакологической активности, однако в некоторых случаях возможен и процесс биологической активации (в частности, биоактивации канцерогенов).

    В почках обнаружены как ферменты I фазы биотрансформации, так и ферменты II фазы. Причём ферменты биотрансформации локализованы и в корковом, и в мозговом веществе почек (табл. 5-16). Однако, как показали исследования, большее количество изоферментов цитохрома Р-450 содержит именно корковый слой почек, а не мозговой. Максимальное содержание изоферментов цитохрома Р-450 обнаружили в проксимальных почечных канальцах. Так, почки содержат изофермент CYP1A1, ранее считавшийся специфичным для лёгких, и CYP1A2. Причём указанные изоферменты в почках подвергаются индукции ПАУ (например, β-нафтовлавоном, 2-ацетиламино- флурином) так же, как и в печени. В почках обнаружили активность CYP2B1, в частности, описали окисление парацетамола (ацетаминофена ♠) в почках под действием этого изофермента. Позднее продемонстрировали, что именно образование токсичного метаболита N-ацетибензахинонимина в почках под действием CYP2E1 (по аналогии с печенью) - основная причина нефротоксического действия данного препарата. При совместном применении парацетамола с индукторами CYP2E1 (этанолом, тестостероном и т.д.) риск поражения почек возрастает в несколько раз. Активность CYP3A4 в почках регистрируют не всегда (только в80% случаев). Следует отметить: вклад изоферментов цитохрома Р-450 почек в биотрансформацию лекарственных веществ скромен и, видимо, в большинстве случаев не имеет клинического значения. Однако для некоторых ЛС биохимическое преобразование в почках - основной путь биотрансформации. Как показали исследования, тропизетрон р (противорвотное ЛС), главным образом, окисляется в почках под действием изоферментов CYP1A2 и CYP2E1.

    Среди ферментов II фазы биотрансформации в почках наиболее часто определяют УДФ-глюкуронилтрансферазу и β-лиазу. Следует отметить, что активность β-лиазы в почках выше, чем в печени. Обнаружение этой особенности позволило разработать некоторые «пролекарства», при активации которых образуются активные мета-

    болиты, селективно действующие на почки. Так, создали цитостатический препарат для лечения хронического гломерулонефрита - S-(6-пуринил)-L-цистеин. Это соединение - изначально неактивное, в почках под действием β-лиазы превращается в активный 6-мер- каптопурин. Таким образом, 6-меркуптопурин производит эффект исключительно в почках; это значительно снижает частоту и выраженность нежелательных лекарственных реакций.

    Глюкуронированию в почках подвергаются такие ЛС, как парацетамол (ацетаминофен ♠), зидовудин (азидотимидин ♠), морфин, сульфаметазон р, фуросемид (лазикс ♠) и хлорамфеникол (левомицетин ♠).

    Таблица 5-16. Распределение ферментов биотрансформации лекарственных средств в почках (Lohr и соавт., 1998)

    * - содержание фермента достоверно выше.

    Литература

    Кукес В.Г. Метаболизм лекарственных средств: клинико-фармакологические аспекты. - М.: Реафарм, 2004. - С. 113-120.

    Середенин С.Б. Лекции по фармакогенетике. - М.: МИА, 2004. -

    Diasio R.B., Beavers T.L., Carpenter J.T. Familial deficiency of dihydropyrimidine dehydrogenase: biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity // J. Clin. Invest. - 1988. - Vol. 81. -

    Lemoine A., Daniel A., Dennison A., Kiffel L. et al. FK 506 renal toxicity and lack of detectable cytochrome P-450 3A in the liver graft of a patient undergoing liver transplantation // Hepatology. - 1994. - Vol. 20. - P. 1472-1477.

    Lewis D.F.V., Dickins M., Eddershaw P.J. et al. Cytochrome-P450 Substrate Specificities, Substrate structural Templates and Enzyme Active Site Geometries // Drug Metabol. Drug Interact. - 1999. - Vol. 15. - P. 1-51.

    Взаимодействие ряда лекарственных веществ в процессе их распределения в организме можно рассматривать как один из важных фармакокинетических этапов, который характеризует их биотрансформацию, ведущую в большинстве случаев к образованию метаболитов.

    Метаболизм (биотрансформация) - процесс химической модификации лекарственных веществ в организме .

    Метаболические реакции подразделяют на несинтетические (когда лекарственные вещества претерпевают химические превращения, подвергаясь окислению, восстановлению и гидролитическому расщеплению или нескольким из этих превращений) - I фаза метаболизма и синтетические (реакция конъюгации и др.) - II фаза. Обычно несинтетические реакции представляют собой лишь начальные стадии биотрансформации, а образующиеся продукты могут участвовать в синтетических реакциях и затем элиминировать.

    Продукты несинтетических реакций могут обладать фармакологической активностью. Если активностью обладает не само вещество, введенное в организм, а какой-либо метаболит, то его называют пролекарством.

    Некоторые лекарственные вещества, продукты метаболизма которых обладают важной в терапевтическом отношении активностью

    Лекарственное вещество

    Активный метаболит

    Аллопуринол

    Аллоксантин

    Амитриптилин

    Нортриптилин

    Ацетилсалициловая кислота*

    Салициловая кислота

    Ацетогексамид

    Гидроксигексамид

    Глютетимид

    4-гидроксиглютетимид

    Диазелам

    Дезметилдиазепам

    Дигитоксин

    Дигоксин

    Имипрамин

    Дезипрамин

    Кортизон

    Гидрокортизон

    Лидокаин

    Дезэтиллидокаин

    Метилдопа

    Метилнорадреналин

    Преднизон*

    Преднизолон

    Пропранолол

    4-гидроксипролранолол

    Спиронолактон

    Канренон

    Тримеперидин

    Нормеперидин

    Фенацетин*

    Ацетаминофен

    Фенилбутазон

    Оксифенбутазон

    Флуразепам

    Дезэтилфлуразепам

    Хлоралгидрат*

    Трихлорэтанол

    Хлордиазепоксид

    Дезметилхлордиазепоксид

    * пролекарства, терапевтическое действие оказывают главным образом продукты их метаболизма.

    Несинтетические метаболические реакции лекарственных веществ катализируются микросомальными ферментными системами эндоплазматического ретикулума печени или немикросомальных ферментных систем. К таким веществам относятся: амфетамин, варфарин, имипрамин, мепробамат, прокаинамид, фенацетин, фенитоин, фенобарбитал, хинидин.

    В синтетических реакциях (реакциях конъюгации) лекарственное вещество или метаболит - продукт несинтетической реакции, соединяясь с эндогенным субстратом (глюкуроновой, серной кислотами, глицином, глутамином), образуют конъюгаты. Они, как правило, не обладают биологической активностью и, будучи высокополярными соединениями, хорошо фильтруются, но плохо реабсорбируются в почках, что способствует их быстрому выведению из организма.

    Самыми распространенными реакциями конъюгации являются : ацетилирование (основной путь метаболизма сульфаниламидов, а также гидралазина, изониазида и прокаинамида); сульфатирование (реакция между веществами с фенольными или спиртовыми группами и неорганическим сульфатом. Источником последнего могут быть серосодержащие кислоты, например цистеин); метилирование (инактивируются некоторые катехоламины, ниацинамид, тиоурацил). Примеры различных типов реакций метаболитов лекарственных веществ приведены в таблице.

    Типы реакций метаболизма лекарственных веществ

    Тип реакции

    Лекарственное вещество

    I. НЕСИНТЕТИЧЕСКИЕ РЕАКЦИИ (катализируются ферментами эндоплазматического ретикулума или немикросомальными ферментами)

    Окисление

    Алифатическое гидроксилирование, или окисление боковой цепочки молекулы

    Тиолентал, метогекситал, пентазоцин

    Ароматическое гидроксилирование, или гидроксилирование ароматического кольца

    Амфетамин, лидокаин, салициловая кислота, фенацетин, фенилбутазон, хлорпромазин

    O-дезалкилирование

    Фенацетин, кодеин

    N-дезалкилирование

    Морфин, кодеин, атропин, имипрамин, изопреналин, кетамин, фентанил

    S-дезалкилирование

    Производные барбитуровой кислоты

    N-окисление

    Аминазин, имипрамин, морфин

    S-окисление

    Аминазин

    Дезаминирование

    Фенамин, гисгамин

    Десульфирование

    Тиобарбитураты, тиоридазин

    Дегалогенизация

    Галотан, метоксифлуран, энфлуран

    Восстановление

    Восстановление азогруппы

    Сульфаниламид

    Восстановление нитрогруппы

    Нитразепам, хлорамфеникол

    Восстановление карбоновых кислот

    Преднизолон

    Восстановление, катализируемое алкогольдегидрогеназой

    Этанол, хлоралгидрат

    Эфирный гидролиз

    Ацетилсалициловая кислота, норзпинефрин, кокаин, прокаинамид

    Амидный гидролиз

    Лидокаин, пилокарпин, изониазид новокаинамид фентанил

    II. СИНТЕТИЧЕСКИЕ РЕАКЦИИ

    Конъюгация с глюкуроновой кислотой

    Салициловая кислота, морфин, парацетамол, налорфин, сульфаниламиды

    Конъюгация с сульфатами

    Изопреналин, морфин, парацетамол, салициламид

    Конъюгация с аминокислотами:

    • глицином

    Салициловая кислота, никотиновая кислота

    • глугатионом

    Изоникотиновая кислота

    • глутамином

    Парацетамол

    Ацетилирование

    Новокаинамид, сульфонамиды

    Метилирование

    Норадреналин, гистамин, тиоурацил, никотиновая кислота

    Превращение некоторых лекарственных веществ, принятых перорально, существенно зависит от активности ферментов, вырабатываемых микрофлорой кишечника, где гидролизуются нестойкие сердечные гликозиды, что существенно снижает их кардиальный эффект. Ферменты, вырабатываемые резистентными микроорганизмами, катализируют реакции гидролиза и ацетилирования, вследствие которых антимикробные средства теряют свою активность.

    Существуют примеры, когда ферментативная активность микрофлоры способствует образованию лекарственных веществ, которые проявляют свою активность. Так, фталазол (фталилсульфатиазол) вне организма практически не проявляет противомикробной активности, но под влиянием ферментов микрофлоры кишечника гидролизуется с образованием норсульфазола и фталевой кислоты, оказывающих противомикробный эффект. При участии ферментов слизистой оболочки кишечника гидролизуются резерпин и ацетилсалициловая кислота.

    Однако главным органом, где осуществляется биотрансформация лекарственных веществ, является печень. После всасывания в кишечнике они через воротную вену попадают в печень, где и подвергаются химическим превращениям.

    Через печеночную вену лекарственные вещества и их метаболиты поступают в системное кровообращение. Совокупность этих процессов называют «эффектом первого прохождения», или пресистемной элиминацией, в результате которой количество и эффективность вещества, поступающего в общий кровоток, может изменяться.

    Лекарственные вещества, обладающие «эффектом первого прохождения» через печень

    Алпренолол

    Кортизон

    Окспренолол

    Альдостерон

    Лабеталол

    Органические нитраты

    Ацетилсалициловая кислота

    Лидокаин

    Пентазоцин

    Верапамил

    Метопролол

    Пролранолол

    Гидралазин

    Морацизин

    Резерпин

    Изопреналин

    Фенацетин

    Имипрамин

    Метоклопамид

    Фторурацил

    Изопреналин

    Метилтестостерон

    Следует иметь в виду, что при пероралъном приеме лекарств их биодоступностъ индивидуальна для каждого пациента и варьирует для каждого препарата . Вещества, подвергающиеся значительным метаболическим превращениям при первом прохождении в печени, могут не оказывать фармакологического эффекта, например лидокаин, нитроглицерин. Кроме того, метаболизм первого прохождения может осуществляться не только в печени, но и в других внутренних органах. Например, хлорпромазин сильнее метаболизируется в кишечнике, чем в печени.

    На течение пресистемной элиминации одного вещества часто оказывают влияние другие лекарственные вещества. Например, аминазин снижает «эффект первого прохождения» пропранолола, в результате концентрация β-адреноблокатора в крови повышается.

    Всасывание и пресистемная элиминация определяют биологическую доступность и, в значительной степени, эффективность лекарственных веществ .

    Ведущую роль в биотрансформации лекарственных веществ играют ферменты эндоплазматической сети клеток печени, которые нередко называют микросомальными ферментами . Известно более 300 лекарственных веществ, способных изменять активность микросомальных ферментов . Вещества, повышающие их активность, получили название индукторов .

    Индукторами ферментов печени являются: снотворные средства (барбитураты, хлоралгидрат), транквилизаторы (диазепам, хлордиазепоксид, мепробамат), нейролептики (хлорпромазин, трифлуоперазин), противосудорожные (фенитоин), противовоспалительные (фенилбутазон), некоторые антибиотики (рифампицин), диуретики (спиронолактон) и др.

    Активными индукторами ферментных систем печени также считаются пищевые добавки, малые дозы алкоголя, кофе, хлорированные инсектициды (дихлордифенилтрихлорэтан (ДДТ), гексахлоран). В небольших дозах некоторые лекарственные средства, например фенобарбитал, фенилбутазон, нитраты, могут стимулировать собственный метаболизм (аутоиндукция).

    При совместном назначении двух лекарственных веществ, одно из которых индуцирует печеночные ферменты, а второе метаболизируется в печени, дозу последнего необходимо увеличить, а при отмене индуктора - снизить. Классический пример такого взаимодействия - сочетание антикоагулянтов непрямого действия и фенобарбитала. Специальными исследованиями доказано, что в 14% случаев причиной кровотечений при лечении антикоагулянтами является отмена лекарственных веществ, индуцирующих микросомальные ферменты печени.

    Очень большой индуцирующей активностью микросомальных ферментов печени обладает антибиотик рифампицин, несколько меньшей - фенитоин и мепробамат.

    Фенобарбитал и другие индукторы ферментов печени не рекомендуется применять в сочетании с парацетамолом и другими лекарственными веществами, продукты биотрансформации которых токсичнее исходных соединений. Иногда индукторы ферментов печени используют для ускорения биотрансформации соединений (метаболитов), чужеродных для организма. Так фенобарбитал, который способствует образованию глюкуронидов, можно использовать для лечения желтухи с нарушенной конъюгацией билирубина с глюкуроновой кислотой.

    Индукцию микросомальных ферментов часто приходится рассматривать как нежелательное явление, поскольку ускорение биотрансформации лекарств приводит к образованию неактивных или менее активных соединений и уменьшению терапевтического эффекта. Например, рифампицин может снизить результативность лечения глюкокортикостероидами, что приводит к повышению дозы гормонального препарата.

    Значительно реже в результате биотрансформации лекарственного вещества образуются более активные соединения, В частности, при лечении фуразолидоном в течение 4-5 дней в организме накапливается двуоксиэтилгидразин, который блокирует моноаминооксидазу (МАО) и альдегиддегидрогеназу, катализирующую окисление альдегидов в кислоты. Поэтому пациентам, принимающим фуразолидон, не следует употреблять спиртные напитки, так как концентрация в крови уксусного альдегида, образующегося из этилового спирта, может достичь такого уровня, при котором развивается выраженное токсическое действие этого метаболита (синдром ацетальдегида).

    Лекарственные вещества, снижающие или полностью блокирующие активность ферментов печени, получили название ингибиторов .

    К лекарственным веществам, угнетающим активность ферментов печени, относят наркотические анальгетики, некоторые антибиотики (актиномицин), антидепрессанты, циметидин и др. В результате применения комбинации лекарственных веществ, одно из которых ингибирует ферменты печени, замедляется скорость метаболизма другого лекарственного вещества, повышаются его концентрация в крови и риск побочных действий. Так, антагонист гистаминовых H 2 -репепторов циметидин дозозависимо угнетает активность ферментов печени и замедляет метаболизм антикоагулянтов непрямого действия, что повышает вероятность кровотечений, а также β-адреноблокаторов, что приводят к выраженной брадикардии и артериальной гипотензии. Возможно угнетение метаболизма антикоагулянтов непрямого действия хинидином. Развивающиеся при таком взаимодействии побочные эффекты могут иметь тяжелое течение. Хлорамфеникол угнетает обмен толбутамида, дифенилгидантоина и неодикумарина (этил бискумацетата). Описано развитие гипогликемической комы при комбинированной терапии хлорамфениколом и толбутамидом. Известны летальные случаи при одновременном назначении больным азатиоприна или меркаптопурина и аллопуринола, ингибирующего ксантиноксидазу и замедляющего метаболизм иммуносупрессивных препаратов.

    Способность одних веществ нарушать метаболизм других иногда специально используют в медицинской практике. Например, дисульфирам применяют при лечении алкоголизма. Этот препарат блокирует метаболизм этилового спирта на стадии ацетальдегида, накопление которого вызывает неприятные ощущения. Подобным образом действуют также метронидазол и противодиабетические средства из группы производных сульфонилмочевины.

    Своеобразную блокаду активности фермента используют при отравлении метиловым спиртом, токсичность которого определяется формальдегидом образующимся в организме под влиянием фермента алкогольдегидрогеназы. Он катализирует также превращение этилового спирта в уксусный альдегид, причем сродство фермента к этиловому спирту выше, чем к метиловому. Поэтому, если в среде находятся оба спирта, фермент катализирует главным образом биотрансформацию этанола, и формальдегид, обладающий значительно более высокой токсичностью, чем уксусный альдегид, образуется в меньшем количестве. Таким образом, этиловый спирт можно использовать в качестве противоядия (антидота) при отравлении метиловым спиртом.

    Этиловый спирт изменяет биотрансформацию многих лекарственных веществ . Однократное его применение блокирует инактивацию различных лекарственных веществ и может усиливать их действие. В начальной стадии алкоголизма активность микросомальных ферментов печени может увеличиваться, что ведет к ослаблению действия лекарственных веществ вследствие ускорения их биотрансформации. Напротив, на более поздних стадиях алкоголизма, когда многие функции печени нарушены, следует учитывать, что действие лекарственных веществ, биотрансформация которых в печени нарушена, может заметно усилиться.

    Взаимодействие лекарственных веществ на уровне метаболизма может реализовываться через изменение печеночного кровотока. Известно, что факторы лимитирующие метаболизм препаратов с выраженным эффектом первичной элиминации (пропранолол, верапамил и др.) - это величина печеночного кровотока и в значительно меньшей степени активность гепатоцитов. В связи с этим любые лекарственные вещества, уменьшающие регионарное печеночное кровообращение, снижают интенсивность метаболизма данной группы препаратов и повышают их содержание в плазме крови.