Войти
Медицинский портал про зрение
  • Информатизация и образование Стратегическое позиционирование вузовской науки: инсайдерское видение и государственная позиция
  • Становление патопсихологии
  • Имбирный чай — рецепты приготовления
  • Как приготовить тортилью
  • Критерии и порядок канонизации святых в русской православной церкви Начало Бытия Церкви, Ее рост и Ее назначение
  • Имя Серафима в православном календаре (Святцах)
  • Аллергические реакции (гиперчувствительность) немедленного типа. Типы аллергических реакций Аллергические реакции замедленного типа развиваются

    Аллергические реакции (гиперчувствительность) немедленного типа. Типы аллергических реакций Аллергические реакции замедленного типа развиваются

    Введение

    Аллергические реакции немедленного типа -- это опосредованные IgE иммунные реакции, протекающие с повреждением собственных тканей. В 1921 г. Прауснитц и Кюстнер показали, что за развитие аллергических реакций немедленного типа отвечают реагины -- факторы, обнаруженные в сыворотке больных этой формой аллергии. Лишь 45 лет спустя Ишизака установил, что реагины -- это иммуноглобулины нового, неизвестного до того времени класса, названные впоследствии IgE. Сейчас достаточно хорошо изучены как сами IgE, так и их роль в заболеваниях, обусловленных аллергическими реакциями немедленного типа. Аллергическая реакция немедленного типа проходит ряд стадий: 1) контакт с антигеном; 2) синтез IgE; 3) фиксация IgE на поверхности тучных клеток; 4) повторный контакт с тем же антигеном; 5) связывание антигена с IgE на поверхности тучных клеток; 6) высвобождение медиаторов из тучных клеток; 7) действие этих медиаторов на органы и ткани.

    Патогенез аллергических реакций немедленного типа

    А. Антигены. Не все антигены стимулируют выработку IgE. Например, таким свойством не обладают полисахариды. Большинство природных антигенов, вызывающих аллергические реакции немедленного типа, -- это полярные соединения с молекулярной массой 10 000--20 000 и большим количеством поперечных сшивок. К образованию IgE приводит попадание в организм даже нескольких микрограммов такого вещества. По молекулярной массе и иммуногенности антигены делятся на две группы: полные антигены и гаптены.

    • 1. Полные антигены, например антигены пыльцы, эпидермиса и сыворотки животных, экстрактов гормонов, сами по себе вызывают иммунный ответ и синтез IgE. Основу полного антигена составляет полипептидная цепь. Его участки, распознаваемые B-лимфоцитами, называются антигенными детерминантами. В процессе переработки полипептидная цепь расщепляется на низкомолекулярные фрагменты, которые соединяются с антигенами HLA класса II и в таком виде переносятся на поверхность макрофага. При распознавании фрагментов переработанного антигена в комплексе с антигенами HLA класса II и под действием цитокинов, вырабатываемых макрофагами, активируются T-лимфоциты. Антигенные детерминанты, как уже указывалось, распознаются B-лимфоцитами, которые начинают дифференцироваться и вырабатывать IgE под действием активированных T-лимфоцитов.
    • 2. Гаптены -- это низкомолекулярные вещества, которые становятся иммуногенными только после образования комплекса с тканевыми или сывороточными белками-носителями. Реакции, вызванные гаптенами, характерны для лекарственной аллергии. Различия между полными антигенами и гаптенами имеют важное значение для диагностики аллергических заболеваний. Так, полные антигены можно определить и использовать в качестве диагностических препаратов для кожных аллергических проб. Определить гаптен и изготовить на его основе диагностический препарат практически невозможно, исключение составляют пенициллины. Это обусловлено тем, что низкомолекулярные вещества при попадании в организм метаболизируются и комплексы с эндогенным белком-носителем образуют в основном метаболиты.

    Б. Антитела. Для синтеза IgE необходимо взаимодействие между макрофагами, T- и B-лимфоцитами. Антигены поступают через слизистые дыхательных путей и ЖКТ, а также через кожу и взаимодействуют с макрофагами, которые перерабатывают и представляют его T-лимфоцитам. Под действием цитокинов, высвобождаемых T-лимфоцитами, B-лимфоциты активируются и превращаются в плазматические клетки, синтезирующие IgE (см. рис. 2.1 ).

    • 1. Плазматические клетки, вырабатывающие IgE, локализуются главным образом в собственной пластинке слизистых и в лимфоидной ткани дыхательных путей и ЖКТ. В селезенке и лимфоузлах их мало. Общий уровень IgE в сыворотке определяется суммарной секреторной активностью плазматических клеток, расположенных в разных органах.
    • 2. IgE прочно связываются с рецепторами к Fc-фрагменту на поверхности тучных клеток и сохраняются здесь до 6 нед. С поверхностью тучных клеток также связываются IgG, однако они остаются связанными с рецепторами не более 12--24 ч. Связывание IgE с тучными клетками приводит к следующему.

    а. Поскольку тучные клетки с фиксированными на их поверхности IgE расположены во всех тканях, любой контакт с антигеном может привести к общей активации тучных клеток и анафилактической реакции.

    б. Связывание IgE с тучными клетками способствует увеличению скорости синтеза этого иммуноглобулина. За 2--3 сут он обновляется на 70--90%.

    в. Поскольку IgE не проникает через плаценту, пассивный перенос плоду сенсибилизации невозможен. Другое важное свойство IgE состоит в том, что в комплексе с антигеном он активирует комплемент по альтернативному пути (см. гл. 1, п. IV.Г.2 ) с образованием факторов хемотаксиса, например анафилатоксинов C3a, C4a и C5a.

    В. Тучные клетки

    • 1. Тучные клетки присутствуют во всех органах и тканях, особенно много их в рыхлой соединительной ткани, окружающей сосуды. IgE связываются с рецепторами тучных клеток к Fc-фрагменту эпсилон-цепей. На поверхности тучной клетки одновременно присутствуют IgE, направленные против разных антигенов. На одной тучной клетке может находиться от 5000 до 500 000 молекул IgE. Тучные клетки больных аллергией несут больше молекул IgE, чем тучные клетки здоровых. Количество молекул IgE, связанных с тучными клетками, зависит от уровня IgE в крови. Однако способность тучных клеток к активации не зависит от количества связанных с их поверхностью молекул IgE.
    • 2. Способность тучных клеток высвобождать гистамин под действием антигенов у разных людей выражена неодинаково, причины этого различия неизвестны. Высвобождение гистамина и других медиаторов воспаления тучными клетками можно предотвратить с помощью десенсибилизации и медикаментозного лечения (см. гл. 4, пп. VI--XXIII ).
    • 3. При аллергических реакциях немедленного типа из активированных тучных клеток высвобождаются медиаторы воспаления. Одни из этих медиаторов содержатся в гранулах, другие синтезируются при активации клеток. В аллергических реакциях немедленного типа участвуют и цитокины (см. табл. 2.1 и рис. 1.6 ). Медиаторы тучных клеток действуют на сосуды и гладкие мышцы, проявляют хемотаксическую и ферментативную активность. Помимо медиаторов воспаления в тучных клетках образуются радикалы кислорода, которые также играют роль в патогенезе аллергических реакций.
    • 4. Механизмы высвобождения медиаторов. Активаторы тучных клеток подразделяются на IgE-зависимые (антигены) и IgE-независимые. К IgE-независимым активаторам тучных клеток относятся миорелаксанты, опиоиды, рентгеноконтрастные средства, анафилатоксины (C3a, C4a, C5a), нейропептиды (например, субстанция P), АТФ, интерлейкины-1, -3. Тучные клетки могут активироваться и под действием физических факторов: холода (холодовая крапивница), механического раздражения (уртикарный дермографизм), солнечного света (солнечная крапивница), тепла и физической нагрузки (холинергическая крапивница). При IgE-зависимой активации антиген должен соединиться по крайней мере с двумя молекулами IgE на поверхности тучной клетки (см. рис. 2.1 ), поэтому антигены, несущие один участок связывания с антителом, не активируют тучные клетки. Образование комплекса между антигеном и несколькими молекулами IgE на поверхности тучной клетки активирует ферменты, связанные с мембраной, в том числе фосфолипазу C, метилтрансферазы и аденилатциклазу (см. рис. 2.2 ). Фосфолипаза C катализирует гидролиз фосфатидилинозитол-4,5-дифосфата с образованием инозитол-1,4,5-трифосфата и 1,2-диацилглицерина. Инозитол-1,4,5-трифосфат вызывает накопление кальция внутри клеток, а 1,2-диацилглицерин в присутствии ионов кальция активирует протеинкиназу C. Кроме того, ионы кальция активируют фосфолипазу A 2 , под действием которой из фосфатидилхолина образуются арахидоновая кислота и лизофосфатидилхолин. При повышении концентрации 1,2-диацилглицерина активируется липопротеидлипаза, которая расщепляет 1,2-диацилглицерин с образованием моноацилглицерина и лизофосфатидиловой кислоты. Моноацилглицерин, 1,2-диацилглицерин, лизофосфатидилхолин и лизофосфатидиловая кислота способствуют слиянию гранул тучной клетки с цитоплазматической мембраной и последующей дегрануляции. К веществам, угнетающим дегрануляцию тучных клеток, относятся цАМФ, ЭДТА , колхицин и кромолин . Альфа-адреностимуляторы и цГМФ, напротив, усиливают дегрануляцию. Кортикостероиды угнетают дегрануляцию крысиных и мышиных тучных клеток и базофилов, а на тучные клетки легких человека не влияют. Механизмы торможения дегрануляции под действием кортикостероидов и кромолина окончательно не изучены. Показано, что действие кромолина не опосредовано цАМФ и цГМФ, а действие кортикостероидов, возможно, обусловлено повышением чувствительности тучных клеток к бета-адреностимуляторам.

    Г. Роль медиаторов воспаления в развитии аллергических реакций немедленного типа. Изучение механизмов действия медиаторов воспаления способствовало более глубокому пониманию патогенеза аллергических и воспалительных заболеваний и разработке новых способов их лечения. Как уже отмечалось, медиаторы, высвобождаемые тучными клетками, делятся на две группы: медиаторы гранул и медиаторы, синтезируемые при активации тучных клеток (см. табл. 2.1 ).

    1. Медиаторы гранул тучных клеток

    а. Гистамин. Гистамин образуется при декарбоксилировании гистидина. Особенно велико содержание гистамина в клетках слизистой желудка, тромбоцитах, тучных клетках и базофилах. Пик действия гистамина наблюдается через 1--2 мин после его высвобождения, продолжительность действия -- до 10 мин. Гистамин быстро инактивируется в результате дезаминирования гистаминазой и метилирования N-метилтрансферазой. Уровень гистамина в сыворотке зависит главным образом от его содержания в базофилах и не имеет диагностического значения. По уровню гистамина в сыворотке можно судить лишь о том, какое количество гистамина выделилось непосредственно перед забором крови. Действие гистамина опосредовано H 1 - и H 2 -рецепторами. Стимуляция H 1 -рецепторов вызывает сокращение гладких мышц бронхов и ЖКТ, повышение проницаемости сосудов, усиление секреторной активности желез слизистой носа, расширение сосудов кожи и зуд, а стимуляция Н 2 -рецепторов -- усиление секреции желудочного сока и повышение его кислотности, сокращение гладких мышц пищевода, повышение проницаемости и расширение сосудов, образование слизи в дыхательных путях и зуд. Предотвратить реакцию на п/к введение гистамина можно только при одновременном применении H 1 - и H 2 -блокаторов, блокада рецепторов только одного типа неэффективна. Гистамин играет важную роль в регуляции иммунного ответа, поскольку H 2 -рецепторы присутствуют на цитотоксических T-лимфоцитах и базофилах. Связываясь с H 2 -рецепторами базофилов, гистамин тормозит дегрануляцию этих клеток. Действуя на разные органы и ткани, гистамин вызывает следующие эффекты.

    • 1) Сокращение гладких мышц бронхов. Под действием гистамина расширяются сосуды легких и увеличивается их проницаемость, что приводит к отеку слизистой и еще большему сужению просвета бронхов.
    • 2) Расширение мелких и сужение крупных сосудов. Гистамин повышает проницаемость капилляров и венул, поэтому при внутрикожном введении в месте инъекции возникают гиперемия и волдырь. Если сосудистые изменения носят системный характер, возможны артериальная гипотония, крапивница и отек Квинке. Наиболее выраженные изменения (гиперемия, отек и секреция слизи) гистамин вызывает в слизистой носа.
    • 3) Стимуляция секреторной активности желез слизистой желудка и дыхательных путей.
    • 4) Стимуляция гладких мышц кишечника. Это проявляется поносом и часто наблюдается при анафилактических реакциях и системном мастоцитозе.

    б. Ферменты. С помощью гистохимических методов показано, что тучные клетки слизистых и легких различаются протеазами, содержащимися в гранулах. В гранулах тучных клеток кожи и собственной пластинки слизистой кишечника содержится химаза, а в гранулах тучных клеток легких -- триптаза. Высвобождение протеаз из гранул тучных клеток вызывает: 1) повреждение базальной мембраны сосудов и выход клеток крови в ткани; 2) повышение проницаемости сосудов; 3) разрушение обломков клеток; 4) активацию факторов роста, участвующих в заживлении ран. Триптаза довольно долго сохраняется в крови. Ее можно обнаружить в сыворотке больных системным мастоцитозом и больных, перенесших анафилактическую реакцию. Определение активности триптазы в сыворотке используется в диагностике анафилактических реакций. При дегрануляции тучных клеток высвобождаются и другие ферменты -- арилсульфатаза, калликреин, супероксиддисмутаза и экзоглюкозидазы.

    в. Протеогликаны. Гранулы тучных клеток содержат гепарин и хондроитинсульфаты -- протеогликаны с сильным отрицательным зарядом. Они связывают положительно заряженные молекулы гистамина и нейтральных протеаз, ограничивая их диффузию и инактивацию после высвобождения из гранул.

    г. Факторы хемотаксиса. Дегрануляция тучных клеток приводит к высвобождению факторов хемотаксиса, которые вызывают направленную миграцию клеток воспаления -- эозинофилов, нейтрофилов, макрофагов и лимфоцитов. Миграцию эозинофилов вызывают анафилактический фактор хемотаксиса эозинофилов и фактор активации тромбоцитов (см. гл. 2, п. I.Г.2.б ) -- самый мощный из известных факторов хемотаксиса эозинофилов. У больных атопическими заболеваниями контакт с аллергенами приводит к появлению в сыворотке анафилактического фактора хемотаксиса нейтрофилов (молекулярная масса около 600). Предполагается, что этот белок также вырабатывается тучными клетками. При аллергических реакциях немедленного типа из тучных клеток высвобождаются и другие медиаторы, вызывающие направленную миграцию нейтрофилов, например высокомолекулярный фактор хемотаксиса нейтрофилов и лейкотриен B4. Привлеченные в очаг воспаления нейтрофилы вырабатывают свободные радикалы кислорода, которые вызывают повреждение тканей.

    2. Медиаторы, синтезируемые при активации тучных клеток

    а. Метаболизм арахидоновой кислоты. Арахидоновая кислота образуется из липидов мембраны под действием фосфолипазы A 2 (см. рис. 2.3 ). Существует два основных пути метаболизма арахидоновой кислоты -- циклоксигеназный и липоксигеназный. Циклоксигеназный путь приводит к образованию простагландинов и тромбоксана A 2 , липоксигеназный -- к образованию лейкотриенов. В тучных клетках легких синтезируются как простагландины, так и лейкотриены, в базофилах -- только лейкотриены. Основной фермент липоксигеназного пути метаболизма арахидоновой кислоты в базофилах и тучных клетках -- 5-липоксигеназа, 12- и 15-липоксигеназа играют меньшую роль. Однако образующиеся в незначительном количестве 12- и 15-гидропероксиэйкозотетраеновые кислоты играют важную роль в воспалении. Биологические эффекты метаболитов арахидоновой кислоты перечислены в табл. 2.2 .

    • 1) Простагландины. Первым среди играющих роль в аллергических реакциях немедленного типа и воспалении продуктов окисления арахидоновой кислоты по циклоксигеназному пути появляется простагландин D 2 . Он образуется в основном в тучных клетках, в базофилах не синтезируется. Появление простагландина D 2 в сыворотке свидетельствует о дегрануляции и развитии ранней фазы аллергической реакции немедленного типа. Внутрикожное введение простагландина D 2 вызывает расширение сосудов и повышение их проницаемости, что приводит к стойкой гиперемии и образованию волдыря, а также к выходу лейкоцитов, лимфоцитов и моноцитов из сосудистого русла. Ингаляция простагландина D 2 вызывает бронхоспазм, что свидетельствует о важной роли этого метаболита арахидоновой кислоты в патогенезе анафилактических реакций и системного мастоцитоза. Синтез остальных продуктов циклоксигеназного пути -- простагландинов F 2альфа, Е 2 , I 2 и тромбоксана A 2 -- осуществляется ферментами, специфичными для разных типов клеток (см. рис. 2.3 ).
    • 2) Лейкотриены. Синтез лейкотриенов тучными клетками человека в основном происходит при аллергических реакциях немедленного типа и начинается после связывания антигена с IgE, фиксированными на поверхности этих клеток. Синтез лейкотриенов осуществляется следующим образом: свободная арахидоновая кислота под действием 5-липоксигеназы превращается в лейкотриен A 4 , из которого затем образуется лейкотриен B 4 . При конъюгации лейкотриена B 4 с глутатионом образуется лейкотриен C 4 . В дальнейшем лейкотриен C 4 превращается в лейкотриен D 4 , из которого, в свою очередь, образуется лейкотриен E 4 (см. рис. 2.3 ). Лейкотриен B 4 -- первый стабильный продукт липоксигеназного пути метаболизма арахидоновой кислоты. Он вырабатывается тучными клетками, базофилами, нейтрофилами, лимфоцитами и моноцитами. Это основной фактор активации и хемотаксиса лейкоцитов в аллергических реакциях немедленного типа. Лейкотриены C 4 , D 4 и E 4 раньше объединяли под названием «медленно реагирующая субстанция анафилаксии», поскольку их высвобождение приводит к медленно нарастающему стойкому сокращению гладких мышц бронхов и ЖКТ. Ингаляция лейкотриенов C 4 , D 4 и E 4 , как и вдыхание гистамина, приводит к бронхоспазму. Однако лейкотриены вызывают этот эффект в 1000 раз меньшей концентрации. В отличие от гистамина, который действует преимущественно на мелкие бронхи, лейкотриены действуют и на крупные бронхи. Лейкотриены C 4 , D 4 и E 4 стимулируют сокращение гладких мышц бронхов, секрецию слизи и повышают проницаемость сосудов. У больных атопическими заболеваниями эти лейкотриены можно обнаружить в слизистой носа. Разработаны и с успехом применяются для лечения бронхиальной астмы блокаторы лейкотриеновых рецепторов -- монтелукаст и зафирлукаст .

    б. Фактор активации тромбоцитов синтезируется в тучных клетках, нейтрофилах, моноцитах, макрофагах, эозинофилах и тромбоцитах. Базофилы этот фактор не вырабатывают. Фактор активации тромбоцитов -- мощный стимулятор агрегации тромбоцитов. Внутрикожное введение этого вещества приводит к появлению эритемы и волдыря (гистамин вызывает такой же эффект в 1000 раз большей концентрации), эозинофильной и нейтрофильной инфильтрации кожи. Ингаляция фактора активации тромбоцитов вызывает сильный бронхоспазм, эозинофильную инфильтрацию слизистой дыхательных путей и повышение реактивности бронхов, которая может сохраняться в течение нескольких недель после однократной ингаляции. Из дерева гинкго выделен ряд алкалоидов -- природных ингибиторов фактора активации тромбоцитов. В настоящее время на их основе разрабатываются новые лекарственные средства. Роль фактора активации тромбоцитов в патогенезе аллергических реакций немедленного типа заключается также в том, что он стимулирует агрегацию тромбоцитов с последующей активацией фактора XII (фактора Хагемана). Активированный фактор XII, в свою очередь, стимулирует образование кининов, наибольшее значение из которых имеет брадикинин (см. гл. 2, п. I.Г.3.б ).

    3. Другие медиаторы воспаления

    а. Аденозин высвобождается при дегрануляции тучных клеток. У больных экзогенной бронхиальной астмой после контакта с аллергеном уровень аденозина в сыворотке повышается. Описаны три типа аденозиновых рецепторов. Связывание аденозина с этими рецепторами приводит к повышению уровня цАМФ. Эти рецепторы можно блокировать с помощью производных метилксантина.

    б. Брадикинин, компонент калликреин-кининовой системы, тучными клетками не вырабатывается. Эффекты брадикинина многообразны: он расширяет сосуды и повышает их проницаемость, вызывает длительный бронхоспазм, раздражает болевые рецепторы, стимулирует образование слизи в дыхательных путях и ЖКТ.

    в. Серотонин также относится к медиаторам воспаления. Роль серотонина в аллергических реакциях немедленного типа незначительна. Серотонин высвобождается из тромбоцитов при их агрегации и вызывает непродолжительный бронхоспазм.

    г. Комплемент также играет важную роль в патогенезе аллергических реакций немедленного типа. Активация комплемента возможна как по альтернативному -- комплексами IgE с антигеном, -- так и по классическому пути -- плазмином (он, в свою очередь, активируется фактором XII). В обоих случаях в результате активации комплемента образуются анафилатоксины -- C3a, C4a и C5a.

    Аллергической реакцией называют изменение свойства человеческого организма отвечать на воздействие окружающей среды при повторных воздействиях на него. Подобная реакция развивается как ответ на влияние веществ белковой природы. Чаще всего они попадают в организм через кожу, кровь или дыхательные органы.

    Такими веществами бывают чужеродные белки, микроорганизмы и продукты их жизнедеятельности. Поскольку они способны влиять на изменения чувствительности организма, именуются аллергенами. Если вещества, вызывающие реакцию, образуются в организме при повреждении тканей, их называют аутоаллергенами, или эндоаллергенами.

    Внешние вещества, попадающие в организм, именуются экзоаллергенами. Реакция проявляется к одному или нескольким аллергенам. Если имеет место последний случай, это поливалентная аллергическая реакция.

    Механизм воздействия вызывающих веществ таков: при первичном попадании аллергенов организм вырабатывает антитела, или противотела, - белковые вещества, противостоящие конкретному аллергену (например, цветочной пыльце). То есть в организме вырабатывается защитная реакция.

    Повторное попадание того же аллергена влечет изменение ответной реакции, что выражается либо приобретением иммунитета (пониженной чувствительности к конкретному веществу), либо повышением восприимчивости к его действию вплоть до сверхчувствительности.

    Аллергическая реакция у взрослых и детей является признаком развития аллергических заболеваний (бронхиальной астмы, сывороточной болезни, крапивницы и т. д.). В развитии аллергии играют роль генетические факторы, что отвечает за 50% случаев возникновения реакции, а также окружающая среда (например, загрязнение воздуха), аллергены, передающиеся через пищу и воздух.

    Вредоносные агенты устраняются из организма антителами, вырабатываемыми иммунитетом. Они связывают, нейтрализуют и удаляют вирусы, аллергены, микробы, вредные вещества, попадающие в организм из воздуха или с пищей, раковые клетки, отмершие после травм и ожогов ткани.

    Каждому конкретному агенту противостоит специфическое антитело, к примеру, вирус гриппа устраняют антигриппозные антитела и т. д. Благодаря налаженной работе иммунной системы из организма устраняются вредоносные вещества: он защищен от генетически чуждых компонентов.

    В удалении чужеродных веществ принимают участие лимфоидные органы и клетки:

    • селезенка;
    • вилочковая железа;
    • лимфатические узлы;
    • лимфоциты периферической крови;
    • лимфоциты костного мозга.

    Все они составляют единый орган иммунной системы. Действующими ее группами являются В- и Т-лимфоциты, система макрофагов, благодаря действию которых обеспечиваются разнообразные иммунологические реакции. Задача макрофагов состоит в нейтрализации части аллергена и поглощении микроорганизмов, Т- и В-лимфоциты полностью устраняют антиген.

    Классификация

    В медицине аллергические реакции различают в зависимости от времени их возникновения, особенностей действия механизмов иммунной системы и др. Наиболее применяемой является классификация, согласно которой аллергические реакции разделены на замедленный или немедленный типы. Ее основа - время возникновения аллергии после контакта с возбудителем.

    Согласно классификации реакция:

    1. немедленного типа - появляется в течение 15–20 мин.;
    2. замедленного типа - развивается через сутки-двое после воздействия аллергена. Недостаток такого разделения состоит в невозможности охватить разнообразные проявления заболевания. Есть случаи, когда реакция возникает через 6 или 18 часов после контакта. Руководствуясь данной классификацией, трудно отнести подобные явления к определенному типу.

    Распространена классификация, в основу которой положен принцип патогенеза, то есть особенности механизмов повреждения клеток иммунной системы.

    Выделяют 4 типа аллергических реакций:

    1. анафилактический;
    2. цитотоксический;
    3. Артюса;
    4. замедленная гиперчувствительность.

    Аллергическая реакция І типа называется также атопической, реакцией немедленного типа, анафилактической или реагиновой. Она возникает через 15–20 мин. после взаимодействия антител-реагинов с аллергенами. В результате в организм выделяются медиаторы (биологически активные вещества), по которым можно увидеть клиническую картину реакции 1-го типа. Этими веществами бывают серотонин, гепарин, простагландин, гистамин, лейкотриены и проч.

    Второй тип чаще всего связан с возникновением лекарственной аллергии, развивающейся из-за гиперчувствительности к медицинским препаратам. Результатом аллергической реакции становится соединение антител с видоизмененными клетками, что приводит к разрушению и удалению последних.

    Гиперчувствительность третьего типа (прецитипиновая, или иммунокомплексная) развивается вследствие соединения иммуноглобулина и антигена, что в комплексе приводит к повреждению тканей и их воспалению. Причиной реакции являются растворимые белки, которые попадают повторно в организм в большом объеме. Такими случаями бывают вакцинации, переливание плазмы крови или сыворотки, инфицирование грибами плазмы крови или микробами. Развитию реакции способствует образование белков в организме при опухолях, гельминтозах, инфекциях и других патологических процессах.

    Возникновение реакций 3-го типа может указывать на развитие артрита, сывороточной болезни, вискулита, альвеолита, феномена Артюса, узелковых периартериитов и др.

    Аллергические реакции IV типа , или инфекционно-аллергические, клеточно-опосредованные, туберкулиновые, замедленные, возникают из-за взаимодействия Т-лимфоцитов и макрофагов с носителями чужеродного антигена. Эти реакции дают знать о себе во время контактного дерматита аллергической природы, ревматоидных артритов, сальмонеллеза, лепры, туберкулеза и других патологий.

    Аллергию провоцируют микроорганизмы-возбудители бруцеллеза, туберкулеза, лепры, сальмонеллеза, стрептококки, пневмококки, грибы, вирусы, гельминты, опухолевые клетки, измененные собственные белки организма (амилоиды и коллагены), гаптены и др. Клинические проявления реакций бывают разными, но чаще всего инфекционно-аллергическими, в виде конъюнктивита или дерматита.

    Типы аллергенов

    Пока нет единого разделения веществ, приводящих к аллергии. В основном их классифицируют по пути проникновения в человеческий организм и возникновению:

    • промышленные: химические вещества (красители, масла, смолы, дубильные вещества);
    • бытовые (пыль, клещи);
    • животного происхождения (секреты: слюна, моча, выделения желез; шерсть и перхоть преимущественно домашних животных);
    • пыльцевые (пыльца трав и деревьев);
    • (яды насекомых);
    • грибковые (грибковые микроорганизмы, попадающие с пищей или воздушным путем);
    • (полноценные или гаптены, то есть выделяющиеся в результате метаболизма лекарств в организме);
    • пищевые: гаптены, гликопротеиды и полипептиды, содержащиеся в морепродуктах, коровьем молоке и прочих продуктах.

    Стадии развития аллергической реакции

    Существует 3 стадии:

    1. иммунологическая: ее продолжительность начинается с момента попадания аллергена и заканчивается соединением антител с повторно возникшим в организме или персистирующим аллергеном;
    2. патохимическая: она подразумевает образование в организме медиаторов - биологически активных веществ, возникающих в результате соединения антител с аллергенами или сенсибилизированными лимфоцитами;
    3. патофизиологическая: отличается тем, что образовавшиеся медиаторы проявляют себя, оказывая патогенное действие на организм человека в целом, в особенности на клетки и органы.

    Классификация по МКБ 10

    База международного классификатора болезней, в которую зачисляют аллергические реакции, является системой, созданной медиками для удобства пользования и хранения данных о различных заболеваниях.

    Алфавитно-цифровой код - это преобразование словесной формулировки диагноза. В МКБ аллергическая реакция значится под числом 10. Код состоит из буквенного обозначения на латинице и трех цифр, что дает возможность закодировать 100 категорий в каждой группе.

    Под 10 номером в коде классифицируются следующие патологии в зависимости от симптомов протекания заболеваний:

    1. ринит (J30);
    2. контактный дерматит (L23);
    3. крапивница (L50);
    4. неуточненная аллергия (T78).

    Ринит, имеющий аллергическую природу, разделяется еще на несколько подвидов:

    1. вазомоторный (J30.2), возникающий вследствие вегетативного невроза;
    2. сезонный (J30.2), вызванный аллергией на цветочную пыльцу;
    3. поллиноз (J30.2), проявляющийся во время цветения растений;
    4. (J30.3), являющийся результатом действия химических соединений или укусов насекомых;
    5. неуточненной природы (J30.4), диагностирующийся в случае отсутствия окончательного ответа на пробы.

    Классификация МКБ 10 вмещает группу Т78, где собраны патологии, возникающие во время действия определенных аллергенов.

    Сюда относят болезни, которые проявляются аллергическими реакциями:

    • анафилактический шок;
    • другие болезненные проявления;
    • неуточненный анафилактический шок, когда невозможно установить, какой аллерген вызвал реакцию иммунной системы;
    • ангиоотек (отек Квинке);
    • неуточненная аллергия, причина которой - аллерген - остается неизвестной после проведения проб;
    • состояния, сопровождающиеся аллергическими реакциями с неуточненной причиной;
    • другие неуточненные аллергические патологии.

    Виды

    К аллергическим реакциям быстрого типа, сопровождающимся тяжелым течением, принадлежит анафилактический шок. Его симптомы:

    1. снижение артериального давления;
    2. низкая температура тела;
    3. судороги;
    4. нарушение дыхательного ритма;
    5. расстройство деятельности сердца;
    6. потеря сознания.

    Анафилактический шок наблюдается при вторичном попадании аллергена, особенно при введении лекарств или при их наружном применении: антибиотиков, сульфаниламидов, анальгина, новокаина, аспирина, йода, бутадиена, амидопирина и др. Эта острая реакция носит угрозу для жизни, поэтому требует неотложной медпомощи. До этого больному нужно обеспечить приток свежего воздуха, горизонтальное положение и тепло.

    Чтобы не допустить анафилактического шока, нужно не заниматься самолечением , поскольку неконтролируемый прием медикаментов провоцирует более тяжелые аллергические реакции. Больному стоит составить список препаратов и продуктов, вызывающих реакции, и на приеме у врача сообщать о них.

    Бронхиальная астма

    Наиболее распространенным видом аллергии является бронхиальная астма. Ею страдают люди, проживающие в определенной местности: с повышенной влажностью или промышленной загрязненностью. Типичный признак патологии - приступы удушья, сопровождающиеся першением и царапаньем в горле, кашлем, чиханием и затрудненным выдохом.

    Причинами астмы становятся аллергены, распространяющиеся в воздухе: от и до промышленных веществ; пищевые аллергены, провоцирующие понос, колики, боль в животе.

    Причиной болезни становится также чувствительность к грибкам, микробам или вирусам. О ее начале сигнализирует простуда, которая постепенно развивается в бронхит, что, в свою очередь, вызывает затруднение дыхания. Причиной патологии становятся также инфекционные очаги: кариес, синусит, отит.

    Процесс формирования аллергической реакции сложен: микроорганизмы, длительное время действующие на человека, явно не ухудшают здоровье, но незаметно формируют аллергическое заболевание, в том числе предастматическое состояние.

    Профилактика патологии включает в себя принятие не только индивидуальных мер, но и общественных. Первые - это закаливание, проводимое систематически, отказ от курения, занятия спортом, регулярная гигиена жилища (проветривание, влажные уборки и т. д.). Среди общественных мер выделяют увеличение количества зеленых насаждений, в том числе парковых зон, разделение промышленных и жилых городских районов.

    Если предастматическое состояние дало знать о себе, необходимо сразу начать лечение и ни в коем случае не заниматься самолечением.

    После бронхиальной астмы наиболее распространенной является крапивница - высыпание на любом участке тела, напоминающее последствия контакта с крапивой в виде зудящих небольших волдырей. Такие проявления сопровождаются повышением температуры до 39 градусов и общим недомоганием.

    Длительность заболевания - от нескольких часов до нескольких суток. Аллергическая реакция повреждает сосуды, повышает проницаемость капилляров, вследствие чего из-за отека появляются волдыри.

    Жжение и зуд настолько сильны, что больные могут до крови расчесывать кожу, занося инфекцию. К образованию волдырей приводит воздействие на организм тепла и холода (соответственно различают тепловую и холодовую крапивницу), физических предметов (одежда и др., от чего возникает физическая крапивница), а также нарушение функционирования желудочно-кишечного тракта (энзимопатическая крапивница).

    В сочетании с крапивницей возникает ангиоотек, или отек Квинке - аллергическая реакция быстрого типа, для которой характерна локализация в области головы и шеи, в частности на лице, внезапное появление и быстрое развитие.

    Отек представляет собой утолщение кожи; его размеры варьируются от горошины до яблока; при этом зуд отсутствует. Болезнь длится 1 час – несколько дней. Возможно ее повторное появление в том же месте.

    Отек Квинке также возникает в желудке, пищеводе, поджелудочной железе или в печени, сопровождается выделениями, болями в области ложечки. Наиболее опасными местами проявления ангиоотека являются головной мозг, гортань, корень языка. У больного затрудняется дыхание, а кожа становится синюшной. Возможно постепенное нарастание признаков.

    Дерматит

    Одним из видов аллергической реакции является дерматит - патология, имеющая схожесть с экземой и возникающая при контакте кожи с веществами, провоцирующими аллергию замедленного типа.

    Сильными аллергенами являются:

    • динитрохлорбензол;
    • синтетические полимеры;
    • формальдегидные смолы;
    • скипидар;
    • полихлорвиниловые и эпоксидные смолы;
    • урсолы;
    • хром;
    • формалин;
    • никель.

    Все эти вещества распространены как на производстве, так и в быту. Чаще они вызывают аллергические реакции у представителей профессий, предполагающих контакт с химическими веществами. Профилактика включает в себя организацию чистоты и порядка на производстве, использование усовершенствованных технологий, минимализирующих вред химикатов при контакте с человеком, гигиену и проч.

    Аллергические реакции у детей

    У детей аллергические реакции возникают по тем же причинам и с теми же характерными признаками, что и у взрослых. С раннего возраста обнаруживаются симптомы пищевой аллергии - они возникают с первых месяцев жизни.

    Повышенная чувствительность наблюдается к продуктам животного происхождения ( , ракообразным), растительного происхождения (орехам всех видов, пшенице, арахису, сое, цитрусовым, землянике, клубнике), а также меду, шоколаду, какао, икре, злакам и т. д.

    В раннем возрасте влияет на формирование более тяжелых реакций в старшем возрасте. Поскольку пищевые белки являются потенциальными аллергенами, больше всего появлению реакции способствуют продукты с их содержанием, особенно коровье молоко.

    Аллергические реакции у детей, возникшие в пищу , отличаются многообразностью, поскольку в патологическом процессе могут быть задействованы разные органы и системы. Клиническим проявлением, возникающим наиболее часто, бывает атопический дерматит - кожная сыпь на щеках, сопровождающаяся сильным зудом. Симптомы проявляются на 2–3 мес. Сыпь распространяется на туловище, локти и колени.

    Характерной бывает также острая крапивница - различные по форме и размерам зудящие волдыри. Вместе с ней проявляется ангиоотек, локализирующийся на губах, веках и ушах. Бывают также поражения пищеварительных органов, сопровождающиеся диареей, тошнотой, рвотой, болями в животе. Дыхательная система у ребенка поражается не изолированно, а в сочетании с патологией желудочно-кишечного тракта и встречается реже в виде аллергического ринита и бронхиальной астмы. Причиной реакции становится повышенная чувствительность к аллергенам яиц или рыбы.

    Таким образом, аллергические реакции у взрослых и детей отличаются разнообразием. Исходя из этого, медики предлагают множество классификаций, где за основу взяты время протекания реакции, принцип патогенеза и др. Наиболее распространенными заболеваниями аллергической природы являются анафилактический шок, крапивница, дерматит или бронхиальная астма.


    Существует мнение, что каждый пятый человек в мире хотя бы раз в жизни переносил эпизод аллергии. С проблемой возникновения аллергических реакций в практической деятельности сталкиваются все врачи независимо от специальности. При этом наблюдается неуклонный рост количества людей с атопическим дерматитом, экземой, бронхиальной астмой и аллергическим ринитом.

    Возникновение анафилактических реакций: анафилактического шока, астматического статуса, отека Квинке, − может представлять непосредственную угрозу жизни пациента. Понимание ключевых механизмов возникновения реакций гиперчувствительности необходимо врачам всех специальностей. Более подробно о классификации аллергических реакций, а также о патогенезе возникновения анафилаксии читайте на сайт в этой статье.

    Что провоцирует возникновение аллергических реакций немедленного типа

    Аллергией называется иммунопатологическая реакция организма, которая сопровождается повреждением его собственных тканей.

    В основе возникновения аллергических реакций лежит механизм сенсибилизации - повышенной чувствительности организма к определенному антигену.

    Антигены подразделяют на экзогенные - поступают из внешней среды, и эндогенные - собственные белки человеческого организма.

    Экзогенные аллергены бывают растительного, животного, инфекционного и синтетического происхождения. Они попадают в организм при вдыхании их с пылью, употреблении во время еды, парентеральном введении или механическом контакте с ними. Экзогенные аллергены наиболее часто провоцируют возникновение аллергических реакций немедленного типа.

    Эндогенные же аллергены - это собственные белки организма, которые изменили свою структуру под влиянием инфекционных или неинфекционных факторов: вирусов, ожога, ультрафиолетового излучения и т.д.
    Классификация аллергических реакций, а также патофизиологические механизмы развития анафилаксии изложены далее в статье.

    Классификация аллергических реакций: современные подходы и терминология

    Существует несколько подходов к классификации аллергических реакций. В зависимости от скорости манифестации гиперэргического иммунного ответа, различают:
    . Аллергические реакции немедленного типа - проявляются на протяжении первых 20 минут после контакта сенсибилизированного организма с аллергеном: например, анафилактический шок;
    . Аллергические реакции замедленного типа - манифестируют через 24 часа и больше после контакта сенсибилизированного организма с аллергеном: например, реакция человека на введения туберкулина.

    Наиболее информативной является классификация аллергических реакций по Кумбсу и Джеллу, согласно которой выделяют такие типы :
    1. Анафилактическия реакция;
    2. Цитотоксическия реакция;
    3. Иммуннокомплексная реакция;
    4. Гиперчувствительность замедленного типа.
    В статье подробно описаны патофизиологические аспекты возникновения анафилактических реакций, которые также являются аллергическими реакциями немедленного типа.

    Аллергическая реакция первого типа: механизм возникновения анафилаксии

    Аллергическая реакция первого типа имеет несколько стадий развития. Следует выделить такие этапы формирования гипервосприимчивости организма к действию антигена:
    1. Первичное попадание антигена в организм: например, вдыхание пыли или шерсти животного;
    2. Поглощение антигена макрофагами и презентация их
    Т-хелперам;
    3. Активация Т-хелперами клонов В-лимфоцитов, что приводит к превращению их в плазматические клетки;
    4. Продукция плазматическими клетками реагинов - иммуноглобулинов класса Е и G4;
    5. Сенсибилизация: распространение реагинов по всему организму с последующей их фиксацией на поверхности базофильных клеток.

    Повторное попадание антигена в организм (например, пыли, шерсти животного, медикаментозного средства) приводит к дегрануляции базофилов, содержащих реагины на поверхности, и высвобождению медиаторов анафилактической реакции: гистамина, фактора миграции эозинофилов, лейкотриенов и многих других. Эти биологически активные вещества воздействуют на клетки-мишени, и, в первую очередь - гладкую мускулатуру.

    Кроме того, данные медиаторы способны значительно увеличивать проницаемость сосудов. Это может привести к таким последствиям:
    . Генерализованная дилатация сосудов (анафилактический шок);
    . Спазм гладких мышц бронхов (приступ бронхиальной астмы);
    . Массивный отек слизистых оболочек (отек Квинке);
    . Спазм гладкой мускулатуры кишечника (диарея).

    Воздействие гистамина на нервные окончания приводит к такому проявлению аллергии, как зуд, а расширение мелких артериол вследствие релаксации гладких мышц сосудистой стенки приводит к развитию аллергической сыпи.

    Таким образом, становится понятным механизм развития анафилаксии - генерализированной реакции гиперчувствительности сенсибилизированного организма в ответ на повторное попадание антигена.. Читайте другие интересные статьи в разделе «Дерматология».

    Смотрите также видео:

    Глава 3. Патогенез аллергических реакций немедленного типа

    На модели экспериментальной анафилаксии и анафилактического шока выявлены основные закономерности развития аллергических реакций немедленного типа, в развитии которых различают три последовательные стадии (А. Д. Адо): 1) стадия иммунных реакций; 2) стадия патохимических нарушений; 3) стадия патофизиологических нарушений.

    § 88. Стадия иммунных реакций

    Стадия иммунных реакций характеризуется накоплением в организме специфических для данного аллергена антител.

    Наиболее типичные аллергические антитела - реагины (называемые еще "кожно-сенсибилизирующие антитела" по их способности фиксироваться в коже) относятся к иммуноглобулинам Е. Они легко фиксируются на клетках различных тканей и поэтому называются "цитофильными". Они термолабильны - разрушаются при нагревании до 56°С. Аллерген соединяется с антителом преимущественно на поверхности клеток. Реакция протекает без участия комплемента (рис. 11.1). Этот механизм имеет место при атопических болезнях человека, анафилактических реакциях. Кроме IgE в аллергических реакциях участвуют антитела, относящиеся к классу IgG.

    Антитела, относящиеся к классу IgG, образуют комплексы с аллергеном (Аг + Ат) в биологических жидкостях (кровь, лимфа, межклеточная жидкость). Если комплекс образуется в избытке антигена, то он обычно откладывается в сосудистой стенке. Образовавшийся комплекс Аг+Ат может фиксировать на себе комплемент. Компоненты комплемента (С3 и др.) обладают выраженным хемотаксическим действием, т. е. способностью привлекать нейтрофилы. Последние фагоцитируют комплекс и выделяют лизосомальные ферменты (протеазы), разрушающие коллагеновые и эластические волокна, повышающие проницаемость сосудов. Внутри сосудов образуются тромбы. Этот тип реакции имеет место при Феномене Артюса и сывороточной болезни (см. рис. 11. II).

    Возможен еще один путь повреждения клеток иммунным комплексом Аг + Ат. В этом случае аллерген (например, антибиотик) фиксируется на клетках (на лейкоцитах и эритроцитах). Циркулирующие антитела образуют комплекс с фиксированным на поверхности клетки аллергеном и повреждают клетку (см. рис. 11. III) . И в этом случае реакция идет при участии комплемента. Такой механизм возможен при проявлениях лекарственной аллергии.

    § 89. Стадия патохимических изменений

    Если в сенсибилизированный (т. е. содержащий аллергические антитела) организм повторно попадает специфический аллерген, то между антителом и аллергеном возникает физико-химическая реакция и образуется макромолекулярный иммунный комплекс, состоящий из аллергена и антитела. Фиксируясь в тканях, иммунный комплекс вызывает ряд изменений обмена веществ. Так, изменяется количество поглощенного тканями кислорода, оно сначала увеличивается, затем уменьшается, происходит активация протеолитических и липолитических ферментов и т. д., что приводит к нарушению функции соответствующих клеток. Например, следствием повреждения тучных клеток соединительной ткани, лейкоцитов крови (особенно базофилов) является освобождение из них гистамина, серотонина и некоторых других биологически активных субстанций, медиаторов аллергии.

    § 90. Медиаторы аллергических реакций

    • Гистамин. В организме человека и животных гистамин содержится в тучных клетках соединительной ткани, базофилах крови, в меньшей степени - нейтрофильных лейкоцитах, в гладких и поперечных полосатых мышцах, клетках печени, эпителии желудочно-кишечного тракта и др.

      Участие гистамина в механизме аллергии выражается в том, что он вызывает спазм гладких мышц (например, бронхиол, матки, кишечника и пр.) и повышает проницаемость кровеносных капилляров, обусловливая отеки, крапивницу, петехии и др. Кроме того, гистамин повышает гидрофильность волокон рыхлой соединительной ткани, способствуя связыванию воды в тканях и возникновению обширных отеков типа отека Квинке.

      Гистамин участвует в механизмах таких аллергических реакций у человека, как зуд, крапивница, кратковременнные гипотензии. Гипотензивные реакции типа коллапсов (или шока) обусловливаются, кроме того, участием кининов (брадикинин), а стойкий бронхоспазм (при бронхиальной астме) - действием на бронхиальное дерево медленно реагирующей субстанции (МРСА).

    • Медленно реагирующая субстанция аллергии (МРСА) - ненасыщенная жирная кислота, содержащая серу, с молекулярной массой 300-500 дальтон. МРСА образуется в тучных клетках под влиянием воздействия аллергена. Она разрушается ферментом арилфосфатазой, которая образуется в эозинофилах. Вещество это вызывает медленное сокращение гладкомышечных органов в противоположность быстрому сокращению, обусловленному гистамином. МРСА вызывает спазм бронхиол человека, ее активность не подавляется антигистаминными веществами и протеолитическими ферментами.
    • Серотонин (5-гидроокситриптамин). Сведения об участии серотонина в аллергических реакциях довольно противоречивы. В опытах на животных обнаружено, что у морских свинок, кошек и крыс он вызывает бронхоспазм. У крыс и мышей серотонин освобождается из тучных клеток под влиянием яичного белка, декстрана и некоторых других веществ. Возникает резкий отек мордочки, лапок, яичек - анафилактоидная реакция.

      В аллергических реакциях человека серотонин существенного значения не имеет.

    • Фактор хемотаксиса для эозинофилов - это пептид с молекулярной массой 500, освобождается из легких, гладкомышечных органов, тучных клеток под влиянием аллергена и антитела IgE при аллергических реакциях немедленного типа. Освобождение этого фактора; происходит одновременно и параллельно освобождению гистамина и медленнореагирующей субстанции (МРСА) аллергии.
    • Брадикинин - полипептид, состоящий из 9 аминокислот. Участие брадикинина в патогенезе аллергических реакций определяется тем, что он расширяет кровеносные капилляры, повышает их проницаемость, понижает тонус артериол и снижает артериальное давление.
    • Ацетилхолин - участвует в механизме аллергических реакций преимущественно тех органов и тканей, где холинергические процессы принимают непосредственное участие в нормальных (физиологических) процессах (например, в синапсах вегетативной и центральной нервной системы, в нервах сердца, кишечника и др.). В процессе сенсибилизации изменяется активность холинэстеразы тканей и крови, а при разрешающем введении аллергена усиливается освобождение из тканей ацетилхолина.
    • Простагландины Е 1 , Е 2 - участвуют в механизмах аллергических реакций - бронхоспазма, лизиса тучных клеток, высвобождении медиаторов.

    § 91. Механизмы освобождения медиаторов аллергии немедленного типа

    Освобождение медиаторов из клетки при аллергии сложный энергозависимый процесс. Разные медиаторы выделяются в разных частях клетки. Медленно реагирующая субстанция выделяется из фосфолипидов клеточных мембран. Гистамин, серотонин, гепарин и фактор хемотаксиса эозинофилов - из гранул тучных клеток. Ацетилхолин выделяется из пузырьков синаптических структур нервных клеток.

    Присоединение аллергена к иммуноглобулину Е на поверхности тучных клеток вызывает сначала возбуждающий эффект, конечным результатом которого является высвобождение содержащихся в гранулах тучных клеток медиаторов аллергической реакции. Высвобождение медиаторов тучными клетками является сложным процессом, связанным с потреблением энергии, идущим в присутствии ионов кальция.

    Количество высвобождаемых медиаторов сильно зависит от содержания в тучных клетках циклического-3, 5"-монофосфата (цАМФ). Увеличение содержания цАМФ в тучных клетках тормозит высвобождение ими гистамина. Морфологическим отражением высвобождения гистамина является дегрануляция тучных клеток (рис. 12).

    Ацетилхолин также вызывает освобождение гистамина, но процесс этот не сопровождается изменениями обмена цАМФ.

    Простагландин Е активирует аденилциклазу, вызывает накопление цАМФ и тормозит освобождение гистамина из клеток.

    § 92. Стадия патофизиологических изменений

    Патофизиологическая стадия аллергических реакций представляет собой конечное выражение тех иммунных и патохимических процессов, которые имели место после внедрения в сенсибилизированный организм специфического аллергена. Она складывается из реакции поврежденных аллергеном клеток, тканей, органов и организма в целом.

    Аллергическое повреждение отдельных клеток хорошо изучено на примере клеток крови (эритроцитов, лейкоцитов, тромбоцитов), соединительной ткани (гистиоцитов, тучных клеток и др.). Повреждение распространяется и на нервные, гладкомышечные клетки, сердечную мышцу и т. д.

    Ответная реакция каждой из повреждаемых клеток определяется ее физиологическими особенностями. Так в нервной клетке возникают процессы возбуждения и торможения, в миофибриллах гладких мышц - контрактура, в капиллярах усиливается экссудация и эмиграция, зернистые лейкоциты (базофилы и др.) и тучные клетки разбухают и выбрасывают свои гранулы - происходит дегрануляция клетки.

    Аллергические повреждения тканей и органов возникают как результат повреждения клеток, составляющих эту ткань, с одной стороны, и как результат нарушения нервной и гуморальной регуляции функций этих органов, с другой. Например, контрактура гладких мышц мелких бронхов дает бронхоспазм и уменьшение просвета воздухоносных путей. Однако в сложном механизме расстройства акта дыхания при бронхиальной астме и возникновении экспираторной одышки участвует и изменение возбудимости дыхательного центра и чувствительных нервных окончаний. Возникает интенсивная секреция слизи, закупоривающей просвет бронхиол, расширение капилляров, оплетающих альвеолы, и повышение проницаемости стенок капилляров.

    Аллергические реакции немедленного типа

    По клиническим проявлениям и механизмам развития все аллергические реакции делят на две группы:

    1) аллергические реакции немедленного типа (АРНТ), или гиперчувствительность немедленного типа (ГНТ), а более правильно – аллергическая реакция, опосредуемая гуморальными механизмами иммунитета (В-опосредуемая форма иммунитета);

    2) аллергические реакции замедленного типа (АРЗТ), или гиперчувствительность замедленного типа (ГЗТ), а более правильно реакция, опосредуемая клеточными механизмами иммунитета (Т-опосредованная форма иммунитета).

    ГНТ развивается в первые минуты и часы после повторного попадания аллергена в ранее сенсибилизированный организм, а ГЗТ возникает позже, спустя 10-12 ч после повторной встречи, достигая максимального своего выражения через 24-48 ч и более.

    К В-зависимым аллергическим реакциям (ГНТ), связанным с синтезом антител – иммуноглобулинов Е-, G-, и М-классов, относят анафилаксию, крапивницу, отек Квинке, поллиноз (сенная лихорадка), сывороточную болезнь, атопическую бронхиальную астму, острый гломерулонефрит и ряд других проявлений аллергии, а также экспериментальные феномены Овери и Артюса-Сахарова.

    К Т-зависимым аллергическим реакциям (ГЗТ), связанным с выработкой активированных (сенсибилизированных) Т-лимфоцитов, относят коллагенозы общего или местного характера: реакцию отторжения трансплантата, туберкулиновую пробу, контактный дерматит и аутоаллергические заболевания.

    В патогенезе практически всех аутоаллергических заболеваний можно наблюдать механизмы, формирующие не только ГЗТ, но и ГНТ.


    Анафилаксия и анафилактический шок . Анафилаксия (беззащитность) – это реакция ГНТ, возникающая при взаимодействии повторно вводимого антигена с цитофильными антителами, образование гистамина, брадикинина, серотонина и других БАВ, ведущее к общим и местным структурным и функциональным нарушениям. В патогенезе ведущее значение принадлежит образованию IgE и IgG4, а также иммунокомплексов (I и III механизмы ГНТ). Анафилактическая реакция может быть генерализованной (анафилактический шок) и местной (феномен Овери). Самой грозной аллергической реакцией ГНТ является анафилактический шок.

    Его развитие можно проследить в опыте на морской свинке, которую предварительно сенсибилизируют сывороточным белком животного другого вида (например, лошадиной сывороткой). Минимальная сенсибилизирующая доза лошадиной сыворотки для морской свинки составляет всего несколько десятков нанограмм (1 нг - 10-9 г). Разрешающая доза той же самой сыворотки, также вводимой парентерально, должна быть в 10 раз больше, после чего животное быстро погибает от анафилактического шока при явлениях прогрессирующей асфиксии .

    У человека анафилактический шок развивается при парентеральном введении лекарственных препаратов (чаще всего антибиотиков , анестетиков, витаминов , миорелаксантов, рентгеноконтрастных веществ, сульфаниламидов и т. д.), аллергенов антитоксических сывороток, аллогенных препаратов гамма-глобулинов и белков плазмы крови, аллергенов гормонов белковой и полипептидной природы (АКТГ, инсулина и т. п.), реже – при проведении специфической диагностики и гипосенсибилизации, употреблении некоторых пищевых продуктов и ужалении насекомыми. Частота развития шока составляет один на 70000 случаев, а летальность – два на 1000. Смерть может наступить в течение 5-10 мин. Основными проявлениями анафилактического шока являются:

    1) гемодинамические нарушения (падение артериального давления, коллапс, снижение объема циркулирующей крови, нарушения в системе микроциркуляции, аритмии, кардиалгия и т. п.);

    2) нарушения со стороны дыхательной системы (асфиксия, гипоксия, бронхоспазм, отек легких);

    3) поражение ЦНС (отек головного мозга, тромбоз сосудов мозга);

    4) нарушения свертывания крови;

    5) поражение желудочно-кишечного тракта (тошнота, боли в животе, рвота, понос);

    6) местные аллергические проявления в виде зуда, крапивницы и т. п.

    Вопрос 54.

    Феномены гипречувствительности немедленного типа. Крапивница, поллиноз, отек Квинке, атопическая бронхиальная астма .

    Крапивница и отек Квинке . Крапивница характеризуется появлением зудящих красных пятен или волдырей при повторном попадании аллергена на кожу из окружающей среды или из кровотока. Она может возникнуть в результате приема в пищу клубники, раков, крабов, лекарств и других веществ. В патогенезе крапивницы имеет значение реагиновый механизм (IgE-класса) и последующее образование медиаторов ГНТ из тучных клеток и базофилов, под влиянием которых остро формируется отек окружающих тканей. Заболевание может развиваться по второму и третьему типам ГНТ – цитолитическому и иммунокомплексному (при переливании крови, антитоксических сывороток, парентеральном введении лекарственных препаратов).

    Отек Квинке – это гигантская крапивница или ангионевротический отек. Он характеризуется скоплением большого количества экссудата в соединительной ткани кожи и подкожной клетчатке, чаще всего в области век, губ, слизистой оболочки языка и гортани, наружных половых органах. Причинами отека Квинке могут быть пищевые, пыльцевые, лекарственные и другие аллергены. В патогенезе ведущее значение имеют IgE-, IgG - и IgM-классов, а реакция АНГ+АНТ протекает по реагиновому, цитолитическому и комплементзависимому типам ГНТ.


    В патогенезе атопической формы бронхиальной астмы имеют значение IgE, а инфекционно-аллергической - все остальные типы иммунологических реакций. Кроме иммунологического звена патогенеза, для бронхиальной астмы характерны и неиммунологические звенья – дисгормональные сдвиги, дисбаланс функционального состояния ЦНС (высшей нервной деятельности, вегетативной нервной системы – повышение тонуса парасимпатической нервной системы), усиленная секреция слизи бронхиальными железами, повышенные чувствительность и реактивность бронхиального дерева.

    Развитие бронхоспазма, отека слизистой оболочки бронхиол, скопления слизи в связи с гиперсекрецией в дыхательных путях в ответ на повторные внедрения аллергенов связано с высвобождением обильного количества медиаторов аллергии ГНТ (гистамина, ацетилхолина, серотонина, лейкотриенов и т. п.) и ГЗТ (лимфокинов и медиаторов активированных клеток-мишеней), что ведет к гипоксии, одышке.

    Поллиноз – сенная лихорадка. В качестве аллергена выступает пыльца растений (поэтому аллергию называют пыльцевой). Для этого типа ГНТ характерно сезонное проявление (например, сезонный насморк, конъюнктивит, бронхит, бронхиальная астма и другие), совпадающее с цветением тех или иных растений (амброзия, тимофеевка и другие). Ведущее значение в патогенезе приобретают IgE вследствие угнетения специфического супрессорного эффекта иммунорегуляторных клеток, контролирующих синтез иммуноглобулинов Е-класса. Большое значение в задержке пыльцы растений на слизистых оболочках дыхательных путей играют конституциональные особенности барьерных систем – нарушения функции мерцательного эпителия, макрофагов и гранулоцитов и другие у больных поллинозом.

    О.55. Феномены гиперчувствительности при переливании крови.

    Сывороточная болезнь . Возникновение сывороточной болезни связывают с введением в организм чужеродной сыворотки, которую применяют в лечебных целях. Она характеризуется развитием генерализованных васкулитов, расстройствами гемодинамики, лимфоаденопатий, повышением температуры, бронхоспазмом, артралгиями. В патологический процесс могут вовлекаться многие органы и системы: сердце (острая ишемия, миокардиты и другие), почки (очаговый и диффузный гломерулонефрит), легкие (эмфизема, отек легких, дыхательная недостаточность), система пищеварения, включая печень, ЦНС. В крови - лейкопения, лимфоцитоз, замедленная СОЭ, тромбоцитопения. Местно аллергическая реакция проявляется в виде покраснения, сыпи, зуда, отеков на коже и слизистых оболочках. Появление сыпи и других проявлений сывороточной болезни возможно после первичного введения сыворотки (первичная сывороточная болезнь). Связано это с тем, что в ответ на первоначальную сенсибилизирующую дозу сыворотки вырабатываются IgG уже к 7 дню. Тип реакции - образование крупных иммунных комплексов АНГ+АНТ, однако возможно участие реагинового механизма.

    Аллергические реакции являются следствием сенсибилизации организма реципиента к иммуноглобулинам, наблюдаются чаще всего при повторных трансфузиях. Клиническими проявлениями аллергической реакции являются повышение температуры тела, озноб, общее недомогание, крапивница, одышка, удушье, тошнота, рвота.

    Гемотрансфузионные осложнения. При переливании несовместимой в антигенном отношении крови, в основном по системе АВО и резус-фактору, развивается гемотрансфузионный шок. В основе его патогенеза лежит быстро наступающий внутрисосудистый гемолиз переливаемой крови. Основные причины несовместимости крови - ошибки в действии врача, нарушение правил переливания.

    Различают 3 степени шока: 1 степень -снижение систолического артериального давления до 90 мм рт. ст.; 2 степень -до 80-70 мм рт. ст.; 3 степень -ниже 70 мм рт. ст.

    В течении гемотрансфузионного шока различают периоды: 1) собственно гемотрансфузионный шок; 2) период олигурии и анурии; 3) период восстановления диуреза; 4) период выздоровления.

    Клинические симптомы шока могут возникнуть в начале трансфузии после переливания 10-30 мл крови, в конце или в ближайшее время после трансфузии. Больной проявляет беспокойство, жалуется на боли и чувство

    стеснения за грудиной, боли в пояснице, мышцах, иногда озноб, наблюдается одышка, затруднение дыхания; лицо гиперемировано, иногда бледное или цианотичное. Возможны тошнота, рвота, непроизвольные мочеиспускание и дефекация. Пульс частый, слабого наполнения, артериальное давление снижается. При быстром нарастании симптомов может наступить смерть.

    При переливании несовместимой крови во время операции под наркозом проявления шока чаще отсутствуют или слабо выражены. В таких случаях на несовместимость крови указывают повышение или падение артериального давления, цианоз кожного покрова и видимых слизистых оболочек, повышенная, иногда значительно, кровоточивость тканей в операционной ране. При выведении больного из наркоза отмечаются тахикардия, снижение артериального давления, может быть острая дыхательная недостаточность.

    Клинические проявления гемотрансфузионного шока при переливании крови, несовместимой по резус-фактору, развиваются через 30-40 мин, а иногда и через несколько часов после переливания.

    При выведении больного из шока может развиться острая почечная недостаточность. В первые дни отмечаются снижение диуреза (олигурия), низкая относительная плотность мочи, нарастание Явлений уремии. При прогрессировании острой почечной недостаточности может наступить полное прекращение мочеотделения (анурия). В крови нарастает содержание остаточного азота и мочевины, билирубина . Период продолжается в тяжелых случаях до 8-15 и даже 30 сут. При благоприятном течении почечной недостаточности постепенно восстанавливается диурез и наступает период выздоровления. При развитии уремии больные умирают на 3-15-й день.

    При массивной гемотрансфузии , при которой переливают кровь, совместимую по групповой и резус - принадлежности, от многих доноров, вследствие индивидуальной несовместимости белков плазмы возможно развитие серьезного осложнения-синдрома гомологичной крови .

    Клиническими - бледность кожных покровов с синюшным оттенком, одышка, беспокойство, холодная на ощупь кожа, частый слабый пульс. АД снижено, венозное давление повышено, в легких определяются множественные мелкопузырчатые влажные хрипы. Отек легких может нарастать, что выражается в появлении крупнопузырчатых влажных хрипов, клокочущего дыхания. Отмечается падение гематокрита и резкое уменьшение ОЦК, несмотря на адекватное или избыточное возмещение кровопотери, замедление времени свертывания крови. В основе синдрома лежат нарушение микро - циркуляции, стаз эритроцитов, микротромбозы, депонирование крови. Профилактика синдрома гомологичной крови предусматривает восполнение кровопотери с учетом ОЦК и его компонентов. Очень важна комбинация донорской крови и кровезаменителей гемодинамического (противошокового) действия (полиглюкин, реополиглюкин), улучшающих реологические свойства крови (ее текучесть) за счет разведения форменных элементов, снижения вязкости, улучшения микроциркуляции.

    Вопрос 56. Феномены гиперчувствиетльности замедленного типа. Туберкулиновая проба, контактный дерматит, реакция отторжения трансплантата.

    Аллергические реакции замедленного типа .

    К ним относятся туберкулиновая проба, контактный дерматит, реакция отторжения трансплантата, аутоаллергические заболевания. Еще раз подчеркнем, что ГЗТ опосредуется не гуморальными, а клеточными механизмами: Т-цитотоксическими лимфоцитами и их медиаторами – различными лимфокинами. Эти реакции не удается воспроизвести пассивной иммунизацией сывороткой; они развиваются при пересадке жизнеспособных лимфоцитов, хотя и возможна параллельная выработка иммуноглобулинов.

    1. Туберкулиновая проба . Это классический пример ГЗТ, или инфекционной аллергии. В месте введения туберкулина признаки аллергической реакции появляются через несколько часов, достигая своего максимума через 24-48 ч. Развивающееся воспаление характеризуется инфильтрацией лейкоцитами, гиперемией, отеком вплоть до развития некроза. Сенсибилизация к микробным антигенам-аллергенам формируется в процессе развития воспаления. В определенных ситуациях такая сенсибилизация оказывает благоприятное влияние на ликвидацию патологического процесса вследствие повышения неспецифической резистентности организма (усиление фагоцитарной активности, повышение активности защитных белков крови и т. п.).

    2. Контактный дерматит . Эта аллергическая реакция возникает при контакте кожи с химическими аллергенами, которые обнаруживаются в растениях (например, ядовитый плющ, сумак, хризантема и другие), красках (ароматические амино - и нитросоединения, динитрохлорбензол и другие), натуральных и искусственных полимерах. Частыми аллергенами являются многочисленные лекарственные средства – антибиотики, производные фенотиазина, витамины и другие. Среди химических аллергенов, вызывающих контактный дерматит, называются вещества, которые содержатся в косметических средствах, смолах, лаках, мылах, резине, металлах – соли хрома, никеля, кадмия, кобальта и другие.

    Сенсибилизация возникает при длительном контакте с аллергеном, а патоморфологические изменения локализуются в поверхностных слоях кожи, которые проявляются инфильтрацией полиморфно-ядерными лейкоцитами, моноцитами и лимфоцитами, последовательно сменяющими друг друга.

    3. Реакция отторжения трансплантата . Эта реакция связана с тем, что при пересадке в организм реципиента определенных органов вместе с трансплантатом поступают антигены гистосовместимости, которые есть во всех ядерных клетках. Известны следующие виды трансплантатов: сингенные – донор и реципиент являются представителями инбредных линий, идентичных в антигенном отношении (монозиготные близнецы); аллогенные – донор и реципиент являются представителями разных генетических линий внутри одного вида; ксеногенные – донор и реципиент относятся к различным видам. По аналогии существуют соответствующие виды трансплантации: изотрансплантация – пересадка ткани в пределах одного и того же организма; аутотрансплантация – пересадка ткани в пределах организмов одного и того же вида; гетеротрансплантация – пересадка ткани среди разных видов. Аллогенные и ксеноген­ные трансплантаты без применения иммуносупрессивной терапии отторгаются.

    Динамика отторжения, например, кожного аллотрансплантата выглядит так: в первые дни края пересаженного кожного лоскута сливаются с краями кожи реципиента по месту пересадки. Благодаря установившемуся нормальному кровоснабжению трансплантата его вид не отличается от нормальной кожи. Через неделю обнаруживается отечность и инфильтрация трансплантата мононуклеарными клетками. Развивается нарушения периферического кровообращения (микротромбоз, стаз). Появляются признаки дегенерации, некробиоза и некроза пересаженной ткани и к 10-12 дню трансплантат отмирает, не регенерируя даже при пересадке донору. При повторной пересадке лоскута кожи от того же донора трансплантат отторгается уже на 5 день или ранее.

    Механизм отторжения трансплантата . Сенсибилизированные антигенами донора лимфоциты реципиента атакуют трансплантат по периферии его контакта с тканями хозяина. Под влиянием лимфокинов для клеток-мишеней и лимфотоксинов связи трансплантата с окружающими тканями разрушаются. На последующих стадиях в разрушение трансплантата включаются макрофаги через механизм антителозависимой цитотоксичности. Далее к клеточным механизмам отторжения трансплантата присоединяются гуморальные - гемагглютинины, гемолизины, лейкотоксины и антитела к лейкоцитам и тромбоцитам (в случае пересадки тканей сердца, костного мозга, почки). По мере реализации реакции АНГ+АНТ образуются БАВ, повышающие проницаемость сосудов, что облегчает миграцию натуральных киллеров и Т-цитотоксических лимфоцитов в ткань трансплантата. Лизис эндотелиальных клеток сосудов трансплантата запускает процесс свертывания крови (тромбоз) и активирует компоненты комплемента (С3b, C6 и другие), привлекая сюда полиморфно-ядерные лейкоциты, которые вносят свой вклад в дальнейшее разрушение связей трансплантата с окружающими тканями.

    Вопрос 57. Принципы выявления, профилактики и лечения аллергических форм патологии. Гипосенсибилизация организма (специфическая и неспецифическая) при ГНТ.

    Понятие о десенсибилизации (гипосенсибилизации) .

    Если организм сенсибилизирован, то встает вопрос о снятии гиперчувствительности. ГНТ и ГЗТ снимаются за счет подавления выработки иммуноглобулинов (антител) и активности сенсибилизированных лимфоцитов.

    Принципы гипосенсибилизации при ГНТ .

    Различают специфическую и неспецифическую гипосенсибилизацию.

    1. Специфическая гипосенсибилизация основана на снятии гиперчувствительности к известному антигену. Она осуществляется за счет (1) устранения контакта с тем аллергеном, который вызвал аллергическую реакцию; (2) преднамеренного введения антигена в малых дозах по различным схемам, благодаря чему возможна активация выработки блокирующих антител и Т-супрессоров; (3) дробного введения лечебных антитоксических сывороток. Так, например, проводится гипосенсибилизация по Безредке путем инъекции того аллергена, который вызвал сенсибилизацию. Она рассчитана на постепенное снижение титра иммуноглобулинов или выработку блокирующих антител. Используют дробное введение установленного аллергена, начиная с минимальных доз (например, 0,01 мл, через 2 часа 0,02 мл и т. д.).

    1) Неспецифическая десенсибилизация - это снижение чувствительности к различным аллергенам. Ее применение основано на принципах, предотвращающих развитие аллергической реакции на разных ее стадиях. Она применяется в тех случаях, когда специфическая гипосенсибилизация невозможна, либо тогда, когда не удается выявить аллерген. Так, по мере развития иммунологической стадии можно добиться угнетения активности ИКС применением глюкокортикоидов и рентгеновского облучения. Глюкокортикоиды блокируют макрофагальную реакцию, образование суперантигена и синтез интерлейкинов и реакцию кооперации. В случаях формирования иммунокомплексной патологии применяют гемосорбцию, а при анафилаксии – препаратов Fc-фрагментов иммуноглобулинов E. Перспективным направлением в неспецифической десенсибилизации является использование принципов регуляция соотношения ИЛ-4.g-интерферона, определяющее синтез в организме IgE-класса.

    Подавление патохимической и патофизиологической стадий ГНТ достигается использованием комплекса лекарственных средств с различной направленностью действия:

    1) Препаратов, изменяющих содержание циклических нуклеотидов в клетках. В частности применяются фармакологические вещества, либо увеличивающие цАМФ (b-адреномиметики, ингибиторы фосфодиэстеразы), либо угнетающие выработку цГМФ (холинолитики), либо изменяющих их соотношение (левамизол и т. п.). Как указывалось выше, высвобождение медиаторов в патохимическую фазу ГНТ определяется соотношением циклических нуклеотидов.

    2) Инактивацию биологически активных соединений путем применения ингибиторов БАВ:

    А) ингибиторов протеолитических ферментов (контрикал),

    Б) веществ, связывающих гистамин (антигистаминные препараты: димедрол, супрастин, тавегил, дипразин, диазолин и другие),

    В) препаратов, связывающих серотонин (антагонистов серотонина – дигидроэрготамин, дигидроэрготоксин, перитол),

    Г) ингибиторов липооксигеназного пути окисления арахидоновой кислоты, подавляющих образование лейкотриенов (дитразин),

    Д) антиоксидантов (альфа-токоферол и другие),

    Е) ингибиторов калликреин-кининовой системы (продектин),

    Ж) противовоспалительных средств (глюкокортикоиды, салицилаты).

    З) целесообразно применение фармакологических препаратов, обладающих широким комплексом действия – стугерона циннаризина), обладающего антикининовым, антисеротониновым и антигистаминовым действиями; препарат является также антагонистом ионов кальция. Возможно использование гепарина как ингибитора комплемента, антагониста серотонина и гистамина, обладающего к тому же блокирующим эффектом в отношении серотонина и гистамина. Следует, правда, иметь в виду, что гепарин обладает способностью вызывать аллергическую реакцию, получившую наименование «гепарининдуцированная тромбоцитопения», о которой речь шла выше.

    2. Защиту клеток от действия БАВ, а также коррекцию функциональных нарушений в органах и системах органов (наркоз, спазмолитики и другие фармакологические препараты).

    Механизмы неспецифической гипосенсибилизации весьма сложны. Например, иммунодепрессивное действие глюкокортикоидов заключается в подавлении фагоцитоза, торможении синтеза ДНК и РНК в ИКС, атрофии лимфоидной ткани, торможении образования антител, подавлении высвобождения гистамина из лаброцитов, уменьшении содержания компонентов комплемента С3-С5 и т. д.

    58. Принципы выявления, профилактики и лечения аллергических форм патологии. Гипосенсибилизация организма (специфическая и неспецифическая) при ГЗТ.

    Принципы гипосенсибилизации при ГЗТ

    При развитии ГЗТ используют, в первую очередь, методы неспецифической гипосенсибилизации, направленные на подавление механизмов кооперации, т. е. на взаимодействие между собой регуляторных лимфоцитов (хелперов, супрессоров и т. п.), а также их цитокинов, в частности интерлейкинов. Для подавления активности А-клеток, запускающих механизмы презентации антигена лимфоцитам, используют различные ингибиторы - циклофосфамид, азотистый иприт, соли золота. Для угнетения механизмов кооперации, пролиферации и дифференцировки антиген-реактивных лимфоидных клеток применяют различные иммунодепрессанты – кортикостероиды, антиметаболиты (аналоги пуринов и пиримидинов, например меркаптопурин, азатиоприн), антагонисты фолиевой кислоты (аметоптерин), цитотоксические вещества (актиномицин C и D, колхицин, циклофосфамид).

    Специфическое действие иммунодепрессантов направлено на подавление активности митотического деления, дифференцировки клеток лимфоидной ткани (Т - и В-лимфоцитов), а также моноцитов, макрофагов и остальных клеток костного мозга и других короткоживущих быстро регенерирующих и интенсивно размножающихся клеток организма. Поэтому угнетающий эффект иммунодепрессантов считается неспецифическим, а гипосенсибилизация, вызванная иммунодепрессантами, стала называться неспецифической.

    В целом ряде случаев в качестве неспецифической гипосенсибилизации применяют антилимфоцитарные сыворотки (АЛС). АЛС оказывают супрессивное влияние главным образом на иммунопатологические (аллергические) реакции клеточного типа: тормозят развитие ГЗТ, замедляют первичное отторжение трансплантатов, лизируют клетки тимуса. Механизм иммунодепрессивного действия АЛС заключается в снижении количества лимфоцитов в периферической крови (лимфоцитопения) и лимфоидной ткани (в лимфатических узлах и т. п.). АЛС помимо влияния на тимусзависимые лимфоциты проявляют свой эффект опосредованно через гипоталамо-гипофизарную систему, что приводит к угнетению выработки макрофагов и подавлению функции тимуса и лимфоцитов. Применение АЛС ограничено вследствие токсичности последней, снижения эффективности при повторном использовании, способности вызвать аллергические реакции и неопластические процессы.

    Для подавления активности сенсибилизированных Т-лимфоцитов и медиаторов ГЗТ (лимфокинов) применяют противовоспалительные средства – антибиотики цитостатического действия (актиномицин С, рубомицин), салицилаты, гормональные препараты (глюкокортикоиды, прогестерон) и биологически активные вещества (простагландины, антисыворотки).

    В редких случаях в качестве средств неспецифической гипосенсибилизации используют гемосорбцию, плазмаферез (последовательную замену 75-95% плазмы), циклоспорин А – низкомолекулярный пептид, подавляющий активность Т-хелперов. В исключительных случаях применяют ионизирующее излучение.

    В заключении следует еще раз обратить внимание на то, что практически во всех случаях аллергических реакций их патогенез намного сложнее, чем представлено выше. В любой форме аллергии можно распознать участие механизмов и ГНТ (гуморального, В-опосредованного типа), и ГЗТ (клеточного, опосредуемого Т-лимфоцитами). Отсюда понятно, что для подавления цитохимической и патофизиологической стадий аллергической реакции целесообразно сочетание принципов гипосенсибилизации, используемых при ГНТ и ГЗТ. Например, при инфекционно-аллергической бронхиальной астме используют не только вышеперечисленные способы неспецифической гипосенсибилизации, но и антибактериальные препараты в сочетании с бронхоспазмолитиками – беа-адреномиметиками, холинолитиками, антигистаминными и антипротеазными препаратами, антагонистами серотонина, ингибиторами калликреин-кининовой системы. Указанные лекарственные средства могут быть использованы в качестве вспомогательных средств гипосенсибилизации и для преодоления трансплантационного иммунитета (например, при аллогенной пересадке органов и тканей).

    Вопрос 59. Гипогидратация. Виды. Причины. Механизмы развития. Проявления.

    . ГИПОГИДРАТАЦИИ

    Гипогидратация возникает в следующих случаях:

    1) вследствие нарушения поступления воды в организм (водное голодание, нарушение глотания, коматозное состояние и др.);

    2) вследствие повышенной потери воды (кровопотеря, полиурия, понос или рвота, гипервентиляция, усиленное потоотделение, потеря биологических жидкостей с экссудатом или с обширных раневых поверхностей).

    При обезвоживании теряется в первую очередь внеклеточная жидкость и ионы натрия, а при более тяжелой его степени – ионы калия и внутриклеточная жидкость. Крайняя степень обезвоживания называется эксикозом и считается наиболее тяжелой формой расстройства водного обмена.

    В целом обезвоживание влечет за собой уменьшение объема циркулирующей крови – гиповолемию, сгущение крови и повышение ее вязкости, тяжелые нарушения кровообращения, микроциркуляции, коллапс. Нарушения кровообращения ведут к развитию гипоксии, в первую очередь, ЦНС. Гипоксия клеток ЦНС может сопровождаться помрачением сознания, комой, нарушением функций жизненно-важных центров. Одновременно гипогидратация сопровождается развитием компенсаторных реакций. Гиповолемия и снижение в результате этого почечного кровотока вызывают избыточную продукцию АДГ и альдостерона, под действием которых усиливается реабсорбция в дистальных отделах нефрона воды и ионов натрия. Диурез может уменьшиттся в 5 раз до уровня облигатного количества мочи, которое еще не вызывает нарушений выведения азотистых шлаков. Но дальнейшее концентрирование мочи, когда ее плотность увеличивается до 1040 и выше, приводит к развитию канальцевого ацидоза и гибели тубулярного аппарата.

    1. ГИПЕРОСМОЛЯРНАЯ ГИПОГИДРАТАЦИЯ

    Развивается вследствие потери организмом жидкости, обедненной солями, т. е. потеря воды превышает потерю электролитов; это обезвоживание возникает в связи с первичной абсолютной нехваткой воды – водного истощения, десикации, эксикоза. Причинами гиперосмолярной дегидратации могут быть следующие факторы:

    1. Алиментарное ограничение поступления воды в организм:

    а) затруднения глотания вследствие сужения пищевода, опухоли и др.;

    б) у тяжелобольных в коматозном и критическом состояниях, тяжелые формы истощения;

    в) у недоношенных и тяжелобольных детей;

    г) отсутствие чувства жажды при некоторых формах заболеваний головного мозга (например, микроцефалия).

    2. Избыточные потери воды через легкие, кожу, почки:

    (а) гипервентиляционный синдром, (б) лихорадка, (в) усиленное потоотделение при повышении температуры окружающей среды, (г) искусственная вентиляция легких, которую проводят неувлажненной дыхательной смесью, (д) отделение больших количеств слабо концентрированной мочи (при несахарном диабете).

    3. Потери гипотонической жидкости с обширных обожженных и травмированных поверхностей тела.

    4. Гипергликемия.

    Патогенез . Потеря воды, гемоконцентрация приводят к увеличению содержания натрия (до 160 ммоль/л) и повышению осмотического давления во внеклеточном прстранстве (выше 300 мОсм/л). Повышение осмотического давления в свою очередь влечет за собой перемещение части воды из клеток в околоклеточное пространство. Возникает гипогидратация клеток, эксикоз.

    Гемоконцентрация сопровождается увеличением показателя гематокрита, возрастаним содержания белка в плазме (относительная гиперпротеинемия) и ведет к развитию типовых нарушений. Обезвоживание внеклеточного сектора приводит к развитию гиповолемии и артериальной гипотензии. В результате гиповолемии развивается циркуляторная гипоксия, которая усиливает расстройства микроциркуляции, внутриваскулярные расстройства микроциркуляции сопровождаются нарушениями реологических свойств крови – сгущением, повышением вязкости, развитием стаза и сладж-синдрома. Экстрасосудистые расстройства микроциркуляции ведут к нарушениям тока межклеточной жидкости и последующей гипоксии и завершаются дезорганизацией метаболических процессов в тканях, а именно: протеолизом (распад белка), гиперазотемией (увеличением сордержания остаточного азота более 40 мг% или 28,6 ммоль/л), аммиака (вследствие избытка его образования в тканях и ограничения утилизации печенью), мочевины (нарушение функции почек – ретенционная гиперазотемия), гипертермией, возникновением мучительного чувства жажды. В зависимости потери определенных ионов развивается либо ацидоз (потеря натрия, бикарбонатов), либо алкалоз (потеря калия, хлора).

    2. ИЗООСМОЛЯРНАЯ ГИПОГИДРАТАЦИЯ.

    Это такой вариант нарушения водного баланса, в основе которого лежит эквивалентное уменьшение объема жидкости и электролитов во внеклеточной среде. При этом возникает солевой дефицит, осложненный потерей соответствующего количества жидкости. Наиболее частыми ее причинами являются:

    (1) острые кровотечения, (2) полиурия, (3) острая патология системы пищеварения:

    а) стеноз привратника; б) острая бактериальная дизентерия; в) холера; г) язвенный колит; д) высокая тонкокишечная непроходимость; е) тонкокишечный свищ.

    При изоосмолярной гипогидратации потеря воды из внеклеточной жидкости приводит, в первую очередь, к нарушениям гемодинамики, сгущению крови (ангидремия). При быстром обезвоживании организма потеря воды плазмы инициирует движение жидкости из клеток во внеклеточное пространство. Сильная кровопотеря (от 750 до 1000 мл за сутки) приводит к перемещению воды из внеклеточного пространства в сосуды, восстанавливая объем циркулирующей крови.

    Нарушения функций. Потеря жидкости, близкой по составу к внеклеточной и плазме, приводит к тяжелым нарушениям функций (организм теряет натрий, хлор, воду) – прогрессивно снижается масса тела, падает артериальное и венозное давление, снижается минутный объем сердца, нарушается деятельность ЦНС (расстройство сознания, прострация, кома), нарушаются функции почек (олигурия, вплоть до анурии), могут возникать гипотензия и шок. Если дегидратация обусловлена потерей большого количества желудочного сока (например, вследствие рвоты), то возникает гипохлоремия и метаболический алкалоз (повышается содержание бикарбонатов плазмы).При диарее уменьшается количество бикарбонатов, а сопутствующие гипотензия и нарушения кровообращения приводят к развитию метаболического ацидоза вследствие нарушения периферического кровообращения и гипоксии.

    II.ГИПООСМОЛЯРНАЯ ГИПОГИДРАТАЦИЯ.

    Она возникает вследствие потери жидкости, обогащенной электролитами. Такое состояние обычно является результатом перехода острой дегидратации в хроническую (хронический дефицит электролитов). Наиболее частыми причинами гипоосмолярной гипогидратации являются:

    1. Потери через желудочно-кишечный тракт: (а) долго незаживающие свищи желудка, кишечника, поджелудочной железы, (б) рвота, поносы и другие диспептические расстройства;

    2. Потери через почки: (а) полиурия с высокой осмотической плотностью мочи, (б) осмотический диурез, (в) болезнь Аддисона (дефицит альдостерона), (г) идиопатический ацидоз новорожденных (у детей до шести месяцев нет карбоангидразы, вследствие чего и нарушается реабсорбция натрия);

    3. Потери через кожу (обильное потоотделение у рабочих горячих цехов, тяжелая физическая работа);

    4. Возмещение изотонических потерь жидкостей организма растворами, не содержащими электролитов (неправильная коррекция), а также прием большого количества пресной воды;

    5. «Синдром больной клетки» – перемещение натрия из внеклеточного пространства в клетки.

    Патогенез . Потеря почками жидкости и в еще большей мере электролитов желудочно-кишечным трактом ведет к гипоосмолярности внеклеточной жидкости (осмотическое давление внеклеточного сектора менее 300 мОсм/л) и в случае выраженной гипоосмолярной гипогидратации возможно вторичное перемещение воды, которая начинает поступать из внеклеточного сектора в клетку. Это может привести к дальнейшему увеличению степени внеклеточной гипогидратации при одновременном развитии внутриклеточного отека (внутриклеточная гипергидратация).

    Следует учитывать потерю организмом определенных ионов, в частности натрия и калия. Потеря калия сопровождается жаждой и переходом воды из клеток в околоклеточные пространства. Компенсация теряемого натрия осуществляется за счет внеклеточной жидкости. Поэтому здесь на первый план выступают нарушения кровообращения (гиповолемия без развития жажды). Потеря натрия пищеварительными соками сопровождается ацидозом, а калия - алкалозом.

    Проявления синдрома общей дегидратации.

    Жажда

    Появляется даже при небольшом дефиците воды при гипернатриемии. Дефицит 3–4 л воды вызывает мучительную жажду.

    Сухость кожи и слизистых оболочек

    Особенно в подмышечной и паховой областях.

    Гипосаливация

    При длительном процессе способствует развитию воспаления в ротовой области и кариеса.

    Гладкий, красный, с глубокими морщинами.

    Глазные яблоки

    Запавшие, мягкие при надавливании.

    Тургор тканей (кожи, мышц)

    Почечный кровоток

    Снижен. Могут появиться признаки почечной недостаточности на фоне олиго– и анурии (азотемия, ацидоз и др.).

    Процессы переваривания и всасывания питательных веществ

    Угнетены, т. к. нарушается выделение соков.

    Неврологические симптомы

    Слабость, вялость, апатия, сонливость или возбуждение.

    Температура тела

    Повышена.

    Масса тела

    Вопрос 60. Гипергидратация. Виды, причины, механизмы развития. Основные проявления.

    . ГИПЕРГИДРАТАЦИЯ

    Гипергидрия возникает либо вследствие избыточного поступления в организм воды, либо неэффективного ее выведения, либо комбинации того и другого. Подобное наблюдается:

    1. При дефиците тироксина и/или тиреотропного гормона аденогипофиза;

    2. Избытке антидиуретического гормона;

    3. Гиперальдостеронизме.

    Возможны три варианта гипергидрий: изоосмолярня, гипоосмолярная и гиперосмолярная гипергидратации.

    1. ИЗООСМОЛЯРНАЯ ГИПЕРГИДРАТАЦИЯ.

    Она воспроизводится в эксперименте путем введении в организм избыточного объема физиологического раствора. Развивающаяся при этом гипергидрия носит временный характер. Осмотическое давление во внеклеточной жидкости не изменено и составляет 300 мОсм/л. Внеклеточное пространство может увеличиваться на несколько литров без признаков отека. Видимые отеки возникают при накоплении в организме около 3 литров жидкости.

    Патогенез. Вследствие гипергидратации внутрисосудистого сектора происходит снижение показателя гематокрита и концентрации белков плазмы крови (относительная гипопротеинемия). Это сопровождается снижением онкотического давления, что облегчает транспорт воды из внутрисосудистого сектора в ткани, и увеличением диуреза вследствие нарастания фильтрационного давления и рефлекторного снижения секреции АДГ (Рис.2). Несоответствие скорости образования мочи степени гипергидратации ведет к образованию отеков.

    При изоосмолярной гипергидратации образование отеков первично. Как правило, отеки связаны с увеличением реабсорбции натрия в почках вследствие вторичного альдостеронизма, который возникает в период формирования отеков. При этой форме гипергидратации организм переполнен водой, но не может ее использовать.

    Наиболее частыми причинами изоосмолярной гипергидратации являются:

    1. Сердечная недостаточность (миокардическая форма);

    2. Патология почек;

    3. Цирроз печени;

    4. Прием и введение солевых изотонических растворов при сниженной выделительной функции почек (олигуия, анурия);

    5. Опухоли коркового вещества надпочечников (альдостерома).

    2. ГИПООСМОЛЯРНАЯ ГИПЕРГИДРАТАЦИЯ

    Она возникает вследствие первичного избытка воды – «водная интоксикация». Причинами гипоосмолярной гипергидратации являются:

    1. Задержка диуреза вследствие почечной недочстаточности;

    2. Осложнение инфузионной терапии изотоническим (5%) раствором глюкозы;

    3. Избыточный прием жидкости через рот или при многократной ирригации толстого кишеччника;

    4. Избыточная продукция АДГ:

    а) послеоперационные состояния;

    б) болезнь Пархона;

    в) боль, страх;

    г) тяжелая мышечная работа;

    5. Увеличение образования эндогенной воды при распаде тканей;

    6. Бессолевая диета;

    7. Применение лекарств, увеличивающих выведение натрия.

    Патогенез. Гипоосмолярная гипергидратация формируется одновременно в клеточном и внеклеточном секторах и потому относится к тотальной гипергидрии. Внутриклеточная гипоосмолярная гипергидратация сопровождается грубыми нарушениями электролитного обмена и кислотно-щелочного баланса (снижение содержания ионов натрия в плазме), а также уменьшением величины мембранного потенциала клеток. При водном отравлении могут наблюдаться тошнота, рвота, судороги, кома («гипоосмолярная кома»), гиперрефлексия.

    3. ГИПЕРОСМОЛЯРНАЯ ГИПЕРГИДРАТАЦИЯ.

    Она может возникнуть в результате вынужденного приема морской или соленой воды в качестве питьевой, результатом чего является быстрое нарастание концентрации электролитов во внеклеточных пространствах - острая гиперосмия (осмолярность более 300 мОсм/л) вследствие того, что плазмолемма не пропускает избытка ионов в цитоплазму. Однако она не может удерживать в клетке воду, и последняя перемещается в межклеточные пространства. В результате нарастает внеклеточная гипергидратация, что несколько снижает степень гиперосмии. Одновременно из-за потери воды в клетках развивается обезвоживание (внутриклеточная дегидратация). Подобный тип нарушений сопровождается развитием таких же симптомов, как и при гиперосмолярной гипогидратации, ведущим из которых является нарастающая жажда, заставляющая человека вновь и вновь принимать соленую воду.

    Увеличение объема циркулирующей крови при гиперосмолярной гипергидратации сопровождается развитием генерализованных отеков и транссудацией жидкости в полости тела (плевральную, перикардиальную и др.) и развитием соответствующей клинической симптоматики.

    Вопрос 61. Отёки: основные патогенетические факторы их развития. Виды отёков, их последствия для организма.

    Отек – это типовой патологический процесс, который характеризуется увеличением содержания воды во внесосудистом межклеточном пространстве. В основе его развития лежит нарушение обмена воды между плазмой крови и периваскулярной жидкостью. Отек наиболее часто встречающаяся форма нарушения обмена воды в организме.

    Отеки различных органов и тканей получили соответствующее название: анасарка - отек подкожной клетчатки, асцит - скопление жидкости в брюшной полости, гидроторакс - скопление жидкости в плевральной полости и т. д.

    Обмен жидкости между капиллярами и тканями происходит через эндотелий микроциркуляторного русла. На артериальном конце капилляра гемодинамическое давление (в норме 35-45 мм рт. ст.) выдавливает через стенку капилляра ультрафильтрат плазмы в ткань, несмотря на онкотическое давление в крови в 25 мм рт. ст. (в тканях – около 10-12 мм рт. ст.), которое препятствует выходу ультрафильтрата. На венозном конце капилляра гидростатическое давление падает до 10-15 мм рт. ст., а осмотическое остается неизменным. Поэтому тканевая жидкость поступает через стенку капилляра в его просвет. В нормальных условиях объем ультрафильтрата должен соответствовать объему реабсорбции. Но если и есть избыток жидкости сверх объема ультрафильтрата, то он возвращается в кровеносное русло через лимфатические капилляры и сосуды.

    Выделяют несколько патогенетических механизмов формирования отеков, что послужило основанием для их патогенетической классификации: 1) гидростатические; 2) онкотические; 3) осмотические; 4) мембраногенные; 5) лимфогенные; 6) нейроэндокринные.

    1. Роль гидростатического (гемодинамического) фактора . Повышение гидростатического давления на артериальном конце капилляра сопровождается ростом давления и площади фильтрации при одновременном снижении давления и объема реабсорбции из-за роста давления на венозном конце капилляра. Наступает задержка жидкости в ткани. По такому механизму развивается отек при тромбофлебитах, беременности , сердечные отеки и другие.

    2. Роль онкотического фактора. Изменения онкотического давления (уменьшение онкотического давления в крови, например, в результате гипопротеинемии или его повышения в тканях) ведут к формированию онкотических отеков. Гипопротеинемия может возникнуть в результате действия многих факторов:

    1) дефицит белка в пище,

    2) нарушение синтеза альбуминов печенью,

    3) избыточная потеря белка почками (протеинурия), с кровью (геморрагии), лимфой (плазморея и лимфорея при ожогах и обширных раневых поверхностях и т. д.).

    Гиперонкия – повышение онкотического давления в тканях может быть обусловлена диспротеинемией (нарушение соотношения альбуминов и глобулинов в крови – в норме 2:1). Альбумины могут возмещаться избытком глобулинов, а общее содержание белка остается нормальным. Следует, однако, иметь в виду, что именно альбумины определяют уровень онкотического давления. Гиперонкия межклеточной жидкости, как правило, носит локальный характер, что и определяет регионарную форму отеков. Гиперонкия может возникнуть в результате следующих патологических состояний:

    1. Перемещение части белков плазмы в ткань при патологическом повышении проницаемости стенки сосудов;

    2. Выход белков из цитоплазмы при альтерации клеток;

    3..gif" width="32" height="24 src=">-ионии, гистамина, серотонина или дефицита тироксина, ионов кальция.

    Описанные механизмы играют важную роль в формирования почечных, печеночных и кахектических отеков (нефроз, туберкулез, злокачественные опухоли, болезни эндокринной системы, желудочно-кишечного тракта).

    3. Роль осмотического фактора . Отек может возникать вследствие понижения осмотического давления в крови или повышения его в межклеточной жидкости. В принципе, гипоосмия крови возникать может, но быстро формирующиеся при этом тяжелые расстройства гомеостаза опережают развитие отека. Гиперосмия тканей, как и их гиперонкия, носит ограниченный характер. Гиперосмия тканей может возникать в следующих случаях:

    2.снижение активности транспорта ионов через клеточные мембраны при тканевой гипоксии;

    3.массивной утечки ионов из клеток при их альтерации;

    4.увеличение степени диссоциации солей при ацидозе.

    В ряде случаев возможно постепенное увеличение осмотического давления в интерстициальном пространстве. Подобное наблюдается при длительной активной задержке ионов натрия в организме с последующим накоплением его, а затем и воды в тканях. Активная задержка натрия обычно возникает вследствие расстройства нейроэндокринной регуляции обмена натрия, в частности при избытке альдостерона. Сигналом для запуска цепочки взаимосвязанных изменений – альдостерон ® задержка натрия ® гиперосмия крови ® секреция вазопрессина ® задержка воды – служит снижение объема циркулирующей крови. Наиболее частой причиной острой гиповолемии является кровопотеря, и данный механизм носит компенсаторный характер. Однако подобный сигнал возникает при острой сердечной недостаточности как реакция на снижение систолического выброса. Этот, по сути, ложный сигнал, тем не менее, заставляет срабатывать вышеуказанную цепь событий, приводящих к формированию стойкой гипернатриемии и гиперволемии.

    4. Мембраногенный механизм развития отека. Этот вид отека формируется вследствие значительного повышения проницаемости сосудистой стенки. Главными факторами изменения проницаемости могут быть:

    1. Перерастяжение стенок микроциркуляторного русла (например, артериальная гипе ремия);

    2. Повышение порозности эндотелия под действием медиаторов воспаления и аллергии;

    3. Повреждение эндотелия токсинами, гипоксией, ацидозом и т. п.;

    4. Нарушение структуры базальной мембраны при активации ферментов.

    Повышение проницаемости стенок сосудов облегчает выход из крови жидкости, меняет соотношение площадей фильтрации и реабсорбции в капиллярах. Кроме того, при повышении проницаемости эндотелия белки плазмы получают возможность выходить из плазмы в тканевую жидкость.

    Обычно в формировании отека принимает участие не один, а несколько или все перечисленные факторы, включаясь последовательно по мере нарушения водно-электролитного баланса. Однако среди этих факторов выделяют такой, который выполняет центральную организующую роль. В связи с этим все отеки по их патогенезу условно делят на гемодинамические, онкотические и другие (см. выше). По причинам происхождения выделяют следующие виды отеков:

    1) застойные,

    2) печеночные,

    3) почечные,

    4) воспалительные,

    5) аллергические,

    6) токсические,

    7) кахектические,

    8) нейроэндокринные.

    Вопрос 62. Этиология и патогенез сердечных отёков.

    1. Сердечные отеки. Причиной возникновения сердечных отеков является сердечная недостаточность, которая проявляется, в первую очередь, снижением минутного объема сердца (МОС). На первом этапе вследствие нарастания центрального венозного давления (гемодинамический фактор) снижается реабсорбция жидкости в капиллярах. Клинически на этом этапе отек еще не проявляется, избыток межтканевой жидкости связывается тканевыми коллоидами. Параллельно включается последовательная цепочка нейроэндокринных реакций "волюм-рефлекс ® осмо-рефлекс", запускаемая сигналом с волюм-рецепторов (снижение сердечного выброса) и приводящая к задержке натрия и воды. Этот результат, целесообразный в случае падения объема циркулирующей крови, в данном случае становится основой дальнейшего развития отека.

    Гиперволемия усиливает перегрузку пораженного миокарда, способствуя дальнейшему повышению центрального венозного давления. Избыток натрия накапливается в тканях, куда он перемещается из сосудистого русла. Это изменение означает начало второго (собственно отечного) этапа развития отека - скопления избытка свободной воды в межклеточном пространстве, выявляемого клинически. Одновременно активируется почечное звено развития отека: снижение почечного кровотока (обусловленного сердечной недостаточностью) служит сигналом для активации ренин-ангиотензин-альдостеронового механизма, усиливающего задержку воды в организме, и, следовательно, потенцирующего развитие отека.

    Недостаточность кровообращения обусловливает развитие гипоксии (вначале гемического, в дальнейшем смешанного типа) и ацидоза. В результате этого усиливаются проницаемость стенок сосудов и выход из них воды в ткани вместе с белками плазмы. С повышением центрального венозного давления нарушается лимфоток, что означает подключение лимфогенного фактора развития отека. Венозный застой в печени и возникающие в ней дистрофические процессы вызывают нарушения ее белково-синтетической функции, что обуславливает гипоонкию крови. Таким образом, сердечный отек в процессе его развития превращается из первоначально гемодинамического в смешанный.

    Гидростатический отекОнкотический отек

    5. Гипоксия в сосудистой стенки и предсердиях

    Повышение проницаемости капилляров

    Мембраногенный отек

    Вопрос 63. Этиология и патогенез почечных отёков

    Почечные отеки (нефритические и нефротические). Нефритический отек развивается при аллергических и воспалительных заболеваниях почек с преимущественным диффузным поражением клубочкового аппарата. Нарушения кровообращения в корковом слое почек обуславливает усиление секреции ренина юкстагломерулярными клетками. В связи с этим включается осмотический фактор развития отека, связанный с активацией системы ренин-ангиотензин-альдостерон-АДГ (антидиуретический гормон), что сопровождается задержкой в организме избытка натрия и воды. Важно иметь в виду, что для диффузного гломерулонефрита характерно повреждение мембран микрососудов и, прежде всего, капилляров во многих органах и тканях организма. Повышение их проницаемости является важным механизмом развития нефритических отеков.

    Лимфогенный механизм.

    Нефротический отек. Он возникает вследствие преимущественного поражения тубулярного (канальцевого) аппарата почек. Для нефроза характерна длительная массивная потеря белка с мочой (протеинурия), которая ведет к гипопротеинемии и соответственно гипоонкии и, как следствие, увеличение фильтрации и снижение реабсорбции воды в капиллярах органов и тканей. В силу этого избыток воды в тканях сочетается с увеличением клубочковой фильтрацией в почках. При значительном выходе жидкости из сосудистого русла в ткани развивается гиповолемия, что служит сигналом для включения нейроэндокринных механизмов регуляции объема жидкости (волюм-рефлекс – осмо-рефлекс) и приводит к задержке в организме натрия и воды. Однако ограничение выведения воды с мочой приводит к дальнейшему потенцированию почечного отека, поскольку гипоонкия крови сохраняется (и даже может увеличиваться в связи с гемодилюцией). "Сэкономленная" почками жидкость не удерживается в крови и переходит в ткани

    Повышение проницаемости капилляров.

    Мембраногенный механизм.